China Standard High Performance 45kw Three-in-One Powertrain Motor with Controller Reducer Fora0 Class, Compact Pure Electric Vehicle, MPV vacuum pump connector

Product Description

 

Product Description

45KW three-in-1 powertrain (motor + controller + reducer), using automotive IGBT, high reliability, high integration, high lightweight, small volume, can be applied to A0 class, compact pure electric vehicle, MPV, micro surface

Detailed Photos

Product Parameters

Model battery voltage
V
Rated speed
rpm
Peak Speed
rpm
Rated Power
kw
Peak Power
kw
Back EMF
v
Peak Current
A
Rated Torque
N.m
Peak Torque
N.m
Gearbox Ratio Cooling Type
Powertrain:Motor and controller 2 in one
MC6-46-HP 60 2500 6000 3 6 10.9 190 11.5 46 / natural cooling
MC10-75-HP 72 3410 7500 10 20 12 320 28 85 / natural cooling
MC10-60-48-HP 48 3500 6500 6 10 11.55 295 16.4 60 / natural cooling
MC20-80-96-HP 96 4500 7500 10 20 12 320 21 85 / natural cooling
Powertrain:Motor and gearbox 2 in 1 with controller
P6-46-HP 60 2500 6000 3 6 10.9±0.5 190 11.5 46 8.33 natural cooling
P6-46-HP 72 2500 6000 3 6 10.9±0.5 190 11.5 46 8.33 natural cooling
P8-60-HP48 48 3000 6000 4 8 / 300 12.7 60 7.964 natural cooling
P8-60-HP60 60 3000 6500 4 8 / 300 12.7 60 7.964 natural cooling
P10-75-HP 60 3000 7500 5 10 12.5±0.5 270 16 75 8.33 natural cooling
P10-75-HP 72 3000 7500 5 10 12.5±0.5 270 16 75 8.33 natural cooling
P15-100-HP 60 4000 7500 7.5 15 12.2±0.5 400 18 100 8.33 natural cooling
P20-70-HP 96 5200 9300 12 20 9.5 350 22 70 8.34 natural cooling
P20-80-HP 96 4500 7500 10 20 12 320 21 80 8.34 natural cooling
P30-95-JM 144 4500 8700 15 30 14 320 32 95 8.34 natural cooling
Powertrain: Motor gearbox and controller 3 in one
P25-90-HP 108 4500 8000 15 25 14 320 32 90 8.34 natural cooling
P30-105-HP 320 4500 8000 15 30 42 120 32 105 8.34 natural cooling
P30-95-HP 144 4500 8700 15 30 14 320 32 95 8.34 natural cooling
P25-95-108-HP 108 4775 8000 14 25 12.6 400 26 95 8.34 natural cooling
P25-100-144-HP 144 4775 8000 13 25 12.6 370 26 100 8.34 natural cooling
P30-105-320-FHP 320 4500 7700 15 30 42 120 32 105 8.34 Controller with fan
P35-100-144-HP 144 4500 8700 15 35 14 350 32 100 8.34 water cooling
P45-120-HP 320 4050 12000 20 45 24.5 235 47 120 10.3 water cooling
P70-165-JL 336 4050 12000 30 70 32.85 255 70 165 10.5 water cooling
P100-220-HP 360 5000 14000 50 100 31.6 355 95.5 220 10 water cooling
P120-260-HP 360 5000 14000 60 120 28.5 460 114 260 10 water cooling

 

Our Advantages

XIHU (WEST LAKE) DIS. POWER master 3 core technologies of electric vehicle power assembly: motor, electric control and reducer; and XIHU (WEST LAKE) DIS. POWER has a global vision, adopts international advanced management concept, integrates R & D, manufacturing, sales and service, and provides customers with low-speed, high torque, high integration, high-speed and low noise, strong overload caP6-P8city, high protection level, system maintenance free The shape is exquisite and beautiful, the protection function is complete, the vector control and various P6-P8rameters can be adjusted according to the customer requirements.

Company Profile

Xihu (West Lake) Dis. Power Co.,Ltd. was founded in March,2571. It is a national Hi-Tech enterprise which specialized in providing energy-saving system.

Xihu (West Lake) Dis. Power Co., Ltd. consists of Xihu (West Lake) Dis. Power (ZheJiang ) Co., Ltd., Xihu (West Lake) Dis. Power (ZheJiang ) Co., Ltd., and Xihu (West Lake) Dis. Power (HangZhou) Co., Ltd. The headquarters is located at No. 26, Yingbin Avenue, National High-tech Zone, HangZhou, ZheJiang . The company can annually produce 250,000 electric vehicle powertrains, 300,000 electric vehicle motors, and 300,000 controllers.

Xihu (West Lake) Dis. Power has a high-quality technical R&D team of more than 120 people, with high-tech talents selected from the National Ten Thousand Talents Program, National Science and Technology Innovation and Entrepreneurship Talents, ZheJiang Science and Technology Entrepreneurship Leaders, Xihu (West Lake) Dis.ang Top Talents, and Xihu (West Lake) Dis.ang Scarce Talents. And independently developed electric vehicle powertrains, permanent magnet synchronous motors, AC asynchronous motors, permanent magnet synchronous controllers, AC asynchronous controllers and other products, serving electric passenger cars, electric logistics vehicles, electric buses, electric minibuses, New energy vehicle industries such as electric forklifts, electric engineering vehicles, and electric logistics vehicles. Xihu (West Lake) Dis. Power has mastered the core technologies of electric vehicle motors, controllers, reducers and powertrains, established the ZheJiang Engineering Technology R&D Center, and listed the ZheJiang Provincial Key Laboratory, with more than 120 sets of experimental benches and experimental equipment. Design and development, performance verification, durability test, IP67 waterproof and dustproof test, mechanical vibration test, mechanical shock test, and full working conditions NVH experiment, high and low temperature cyclic impact experiment, high and low temperature loading operation experiment and other product design verification and testing capabilities.

Xihu (West Lake) Dis. Power has built an electric vehicle powertrain automated assembly workshop, an electric motor automated assembly workshop, a controller CHINAMFG automatic placement workshop, an automated winding and embedding workshop, a casting processing center, an online spraying center, a complete machine performance digital inspection center, and Created a zero-defect quality assurance system to provide customers with perfect products and high-quality services. Xihu (West Lake) Dis. Power has obtained the automotive industry IATF16949:2016 quality management system certification, ISO9001:2015 quality management system certification, ISO14001:2015 environmental management system certification, ISO45001:2018 occupational health and safety management system certification, EU product safety CE certification, and U.S. product safety Performance UL certification, Korean electrical product safety KC certification, etc.

At present, the company has formed a research and development platform suitable for 6 categories of electric drive products such as pure electric passenger vehicles, pure electric commercial vehicles, pure electric special vehicles, extended-range hybrids, electric vehicles, and intelligent unmanned vehicles, forming a 1.2kw- 500kw power series products, supporting the development of more than 260 varieties of electric power system products for domestic and foreign vehicle companies and power system integrators. In terms of application in the electric vehicle market, the company’s products are used in electric vehicles such as FIAT, Xpeng, BAIC, Geely, BYD, Changan, Xihu (West Lake) Dis.feng, Xihu (West Lake) Dis., Haima, Zotye, GM, King Long, Xihu (West Lake) Dis., Foton, Great Wall, Weimar and other electric vehicles. It has been successfully applied and has been among the best in market share for many years. The company’s products sell well all over the country, and are exported to Europe, America, India, the Middle East, Africa and Southeast Asia.

Xihu (West Lake) Dis. Power, Innovation Technology!

 

FAQ

Q1. What are your terms of packing?
A: We pack our goods in neutral wooden boxes and paper cartons. If you have a legally registered brand, we can pack the goods in your branded boxes after getting your authorization letters.

Q2. What are your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll send you the photos of the products and packages before you pay the balance. For big orders, we accept L/C.

Q3. What are your terms of delivery?
A: EXW, FOB.

Q4. How about your delivery time?
A: It will take 15 to 45days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q5. Can you produce according to the samples?
A: Yes, we can produce your samples or technical drawings. We can produce the molds and fixtures in-house.

Q6. Do you test all your goods before delivery?
A: Yes, we have a 100% test before delivery, if necessary we can send an inspection report before delivery.

Q7. How long is your warranty period?
A: In general,2 years after deliveried
Q8. Do you have any certificates?
A: CE,SGS,ISO9001,IATF16949,UL,Etc

Q9. Do you have the import & export license?
We are official import & export licensed manufacturer.

Certifications

Application: Universal, Industrial, Car
Operating Speed: High Speed
Operation Mode: Electric Motor
Magnetic Structure: Permanent Magnet
Function: Driving
Structure: Rotating Armature Type (Pole Fixed)

electric motor

Can you provide examples of machinery or equipment that rely on electric motors?

Electric motors are extensively used in various machinery and equipment across different industries. They play a crucial role in converting electrical energy into mechanical energy to power a wide range of applications. Here are some examples of machinery and equipment that heavily rely on electric motors:

  • Industrial Machinery: Electric motors are found in numerous industrial machinery and equipment, such as pumps, compressors, fans, conveyors, agitators, mixers, and machine tools. These motors provide the necessary power for moving fluids, gases, and materials, as well as driving mechanical processes in manufacturing, mining, construction, and other industrial applications.
  • Electric Vehicles: Electric motors are the primary propulsion system in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They provide the power needed to drive the wheels and propel the vehicle. Electric motors in EVs and HEVs offer high efficiency, instant torque, and regenerative braking capabilities, contributing to the advancement of sustainable transportation.
  • Household Appliances: Many household appliances rely on electric motors for their operation. Examples include refrigerators, air conditioners, washing machines, dishwashers, vacuum cleaners, blenders, and electric fans. Electric motors enable the movement, cooling, or mechanical functions in these appliances, enhancing convenience and efficiency in daily household tasks.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for various functions. Motors power the fans in air handling units, circulate air through ducts, and drive compressors in air conditioning and refrigeration systems. Electric motors in HVAC systems contribute to efficient temperature control and air circulation in residential, commercial, and industrial buildings.
  • Medical Equipment: Electric motors are essential components in a wide array of medical equipment. Examples include MRI machines, X-ray machines, CT scanners, surgical robots, dental drills, infusion pumps, and patient lifts. These motors enable precise movements, imaging capabilities, and mechanical functions in medical devices, supporting diagnostics, treatment, and patient care.
  • Power Tools: Electric motors are commonly used in power tools such as drills, saws, grinders, sanders, and routers. They provide the rotational force and power required for cutting, shaping, drilling, and other tasks. Electric motors in power tools offer portability, ease of use, and consistent performance for both professional and DIY applications.
  • Aircraft Systems: Electric motors are increasingly utilized in aircraft systems. They power various components, including landing gear actuation systems, fuel pumps, hydraulic systems, and cabin air circulation systems. Electric motors in aircraft contribute to weight reduction, energy efficiency, and improved reliability compared to traditional hydraulic or pneumatic systems.

These examples represent just a fraction of the machinery and equipment that rely on electric motors. From industrial applications to household appliances and transportation systems, electric motors are integral to modern technology, providing efficient and reliable mechanical power for a wide range of purposes.

electric motor

How do electric motors contribute to the precision of tasks like robotics?

Electric motors play a critical role in enabling the precision of tasks in robotics. Their unique characteristics and capabilities make them well-suited for precise and controlled movements required in robotic applications. Here’s a detailed explanation of how electric motors contribute to the precision of tasks in robotics:

  1. Precise Positioning: Electric motors offer precise positioning capabilities, allowing robots to move with accuracy and repeatability. By controlling the motor’s speed, direction, and rotation, robots can achieve precise position control, enabling them to perform tasks with high levels of accuracy. This is particularly important in applications that require precise manipulation, such as assembly tasks, pick-and-place operations, and surgical procedures.
  2. Speed Control: Electric motors provide precise speed control, allowing robots to perform tasks at varying speeds depending on the requirements. By adjusting the motor’s speed, robots can achieve smooth and controlled movements, which is crucial for tasks that involve delicate handling or interactions with objects or humans. The ability to control motor speed precisely enhances the overall precision and safety of robotic operations.
  3. Torque Control: Electric motors offer precise torque control, which is essential for tasks that require forceful or delicate interactions. Torque control allows robots to exert the appropriate amount of force or torque, enabling them to handle objects, perform assembly tasks, or execute movements with the required precision. By modulating the motor’s torque output, robots can delicately manipulate objects without causing damage or apply sufficient force for tasks that demand strength.
  4. Feedback Control Systems: Electric motors in robotics are often integrated with feedback control systems to enhance precision. These systems utilize sensors, such as encoders or resolvers, to provide real-time feedback on the motor’s position, speed, and torque. The feedback information is used to continuously adjust and fine-tune the motor’s performance, compensating for any errors or deviations and ensuring precise movements. The closed-loop nature of feedback control systems allows robots to maintain accuracy and adapt to dynamic environments or changing task requirements.
  5. Dynamic Response: Electric motors exhibit excellent dynamic response characteristics, enabling quick and precise adjustments to changes in command signals. This responsiveness is particularly advantageous in robotics, where rapid and accurate movements are often required. Electric motors can swiftly accelerate, decelerate, and change direction, allowing robots to perform intricate tasks with precision and efficiency.
  6. Compact and Lightweight: Electric motors are available in compact and lightweight designs, making them suitable for integration into various robotic systems. Their small size and high power-to-weight ratio allow for efficient utilization of space and minimal impact on the overall weight and size of the robot. This compactness and lightness contribute to the overall precision and maneuverability of robotic platforms.

Electric motors, with their precise positioning, speed control, torque control, feedback control systems, dynamic response, and compactness, significantly contribute to the precision of tasks in robotics. These motors enable robots to execute precise movements, manipulate objects with accuracy, and perform tasks that require high levels of precision. The integration of electric motors with advanced control algorithms and sensory feedback systems empowers robots to adapt to various environments, interact safely with humans, and achieve precise and controlled outcomes in a wide range of robotic applications.

electric motor

How do electric motors handle variations in load, speed, and torque?

Electric motors are designed to handle variations in load, speed, and torque through various control mechanisms and techniques. Here’s a detailed explanation of how electric motors handle these variations:

  1. Load Variations: Electric motors can handle variations in load by adjusting the amount of torque they produce. When the load on the motor increases, such as when additional resistance or weight is applied, the motor responds by increasing the torque output. This is achieved through the control of the motor’s input current or voltage. For example, in DC motors, increasing the current supplied to the motor can compensate for the increased load, ensuring that the motor can continue to operate at the desired speed.
  2. Speed Variations: Electric motors can handle variations in speed by adjusting the frequency of the power supply or by varying the voltage applied to the motor. In AC motors, the speed is determined by the frequency of the alternating current, so changing the frequency can alter the motor’s speed. In DC motors, the speed can be controlled by adjusting the voltage applied to the motor. This can be achieved using electronic speed controllers (ESCs) or by employing pulse width modulation (PWM) techniques to control the average voltage supplied to the motor.
  3. Torque Variations: Electric motors can handle variations in torque by adjusting the current flowing through the motor windings. The torque produced by a motor is directly proportional to the current flowing through the motor. By increasing or decreasing the current, the motor can adjust its torque output to match the requirements of the load. This can be accomplished through various control methods, such as using motor drives or controllers that regulate the current supplied to the motor based on the desired torque.
  4. Control Systems: Electric motors often incorporate control systems to handle variations in load, speed, and torque more precisely. These control systems can include feedback mechanisms, such as encoders or sensors, which provide information about the motor’s actual speed or position. The feedback signals are compared to the desired speed or position, and the control system adjusts the motor’s input parameters accordingly to maintain the desired performance. This closed-loop control allows electric motors to respond dynamically to changes in load, speed, and torque.

In summary, electric motors handle variations in load, speed, and torque through various control mechanisms. By adjusting the current, voltage, or frequency of the power supply, electric motors can accommodate changes in load and speed requirements. Additionally, control systems with feedback mechanisms enable precise regulation of motor performance, allowing the motor to respond dynamically to variations in load, speed, and torque. These control techniques ensure that electric motors can operate effectively across a range of operating conditions and adapt to the changing demands of the application.

China Standard High Performance 45kw Three-in-One Powertrain Motor with Controller Reducer Fora0 Class, Compact Pure Electric Vehicle, MPV   vacuum pump connector	China Standard High Performance 45kw Three-in-One Powertrain Motor with Controller Reducer Fora0 Class, Compact Pure Electric Vehicle, MPV   vacuum pump connector
editor by CX 2023-11-29