China Standard CE Approved 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor IP55 for Water Pump, Compressor, Gear Reducer Fan Blower vacuum pump and compressor

Product Description

We,GOGOGO Mechanical&Electrical Co.,Ltd specialize in high quality energy-efficient electric motors. The combination of the best available materials, high quality sheet metal and the right amount of copper in the rotor/stator makes GOGOGO’s electric motors highly energy-efficient.

We design our electric motors to fit and match our customer’s requirements at our production site. The electric motors can be supplemented with a range of options and accessories or modified with a special design to endure any environment.

Electric motors account for a large part of the electricity used. If we look at the world, electric motors account for about 65 percent of the electricity used in industry. To reduce this use of electricity, there are legal requirements regarding the efficiency of electric motors manufactured in the EU, or exported into the EU.

Three-phase, single-speed asynchronous motors are covered by the requirements today. Asynchronous motors are the most common type of motor and account for 90 percent of the electricity consumption of all electric motors in the power range 0.75 – 375 kW.

According to that standard, the energy efficiency classes have the designations IE1, IE2, IE3 and IE4, where IE4 has the highest efficiency.


Revision of the standard

A revision of the standard was decided by the Ecodesign Committee in 2019. The revision was published on October 1, 2019. The following will apply:

For electric motors

From July 1, 2571

2-, 4-, 6- and 8-pole motors from 0.75 – 1000 kW (previously up to 375kW) are included in efficiency class IE3.

Motors within the range 0.12 – 0.75 kW must meet efficiency class IE2.

The previous possibility to replace IE3 motors with an IE2 motor with frequency drive disappears.

From July 1, 2571

For 2-, 4-, 6- and 8-pole motors from 0.12 – 1000 kW, the efficiency class IE2 now also applies to Ex eb certified motors with high safety.

Single phase motors with greater power than 0.12 kW are covered by the corresponding IE2 class.

The higher efficiency class IE4 applies to 2, 4 and 6-pole motors between 75 – 200 kW.

For frequency inverters

From July 1, 2571

For use with electric motors with power from 0.12 – 1000 kW, the frequency inverter must pass efficiency class IE2 specially designed for inverters.

Current requirements according to the Directive

Since 16 June, 2011 it is prohibited to place electric motors below energy efficiency class IE2 on the market, or to put them into service in the EU.

Since January 1, 2015, electric motors within the range 7.5 – 375 kW (2-, 4-, and 6-pole) must meet the requirements for IE3, or IE2 if the latter is combined with frequency inverters for speed control. The legal requirement thus provides 2 options.

From January 1, 2017, the requirements were tightened so that all motors 0.75 – 375 kW (2-, 4-, and 6-pole) must meet the requirements for IE3, or IE2 if they are combined with frequency inverters.

Exemptions from the current directive

  • Operation other than S1 (continuous drive) or S3 (intermittent drive) with a nominal cyclicity factor of 80 percent or lower.
  • Made for assembly with frequency inverters (integral motors).
  • Electric motors made for use in liquid.
  • Electric motors that are fully integrated into a product (e.g. a gear, pump, fan or compressor) where the energy performance is not tested independently of the product.
  • Brake motors

Electric motors intended for operation exclusively:

  • At altitudes exceeding 4 000 CHINAMFG above sea level.
  • If ambient air temperatures exceed 60°C.
  • Where maximum operating temperature exceeds 400°C.
  • Where ambient air temperatures are less than -30°C for all motors, or less than 0°C for motors with water cooling.
  • In explosive atmospheres (as defined in Directive 94/9 / EC 9)

The requirements do not apply to ships or other means of transport that carry goods or persons, since there must be specially designed engines for this purpose. (If the same mobile conveyor belt is used on ships as well as on land, the rules apply).

Also, the requirements do not apply to repair of motors previously placed on the market, or put into service – unless the repair is so extensive that the product will in practice be brand new.

If the motor is to be further exported for use outside Europe, the requirements do not apply.

Some other requirements apply to water-cooled motors

We have our own design and development team, we can provide customers with standard AC electric motors, We can also customize the single phase/three phase motors according to the special needs of customers.    Currently our main motor products cover 3 – phase high – efficiency motors,general 3 – phase motors, single phase motors, etc.
The main motor ranges: IE3 / YE3, IE2 / YE2, IE1 / Y2, Y, YS, MS, YC, YL, YY, MC, MY, ML motors.
 American standard NEMA motors
Russian standard GOST ANP motors
ZheJiang type AEEF motors,YC motors

Why choose us?
Guarantee of our motors:18-24months
General elivery time:15-30days
Price of motors: Most reasonable during your all suppliers
Packing:Strong export cartons/wooden case/plywood cases/pallets
Payment way with your order: T/T,LC,DP,etc

Sample order: Acceptable
Shipment way: Sea ship,Air flight,Express way,Land transfer way.

If you are looking for new better supplier or purchase electric motors, please feel free contact us now.You will get all what you want.

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 2
US$ 30/Piece
1 Piece(Min.Order)




electric motor

What maintenance practices are essential for prolonging the lifespan of an electric motor?

Maintaining electric motors is crucial for prolonging their lifespan and ensuring optimal performance. Proper maintenance practices help prevent failures, minimize downtime, and maximize the efficiency and reliability of electric motors. Here’s a detailed explanation of essential maintenance practices for prolonging the lifespan of an electric motor:

  1. Regular Inspections: Conduct regular visual inspections of the motor to identify any signs of wear, damage, or loose connections. Inspect the motor’s external components, such as the housing, bearings, cooling fans, and cables. Look for any unusual noise, vibration, or overheating during operation, as these can indicate potential issues that require attention.
  2. Lubrication: Proper lubrication is vital for the smooth operation and longevity of electric motors. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants. Apply lubrication to bearings, shafts, and other moving parts as specified. Over-lubrication or using incompatible lubricants can cause overheating and premature wear, so it’s essential to follow the recommended practices.
  3. Cleaning: Keep the motor clean and free from dirt, dust, and debris that can accumulate over time. Regularly clean the motor’s exterior using a soft brush or compressed air. Ensure that cooling vents and fans are clear of any obstructions to maintain proper airflow and prevent overheating. Cleanliness helps prevent insulation damage and improves heat dissipation.
  4. Alignment and Balance: Misalignment or imbalance in the motor’s shaft and coupling can lead to excessive vibrations and premature wear. Regularly check and correct any misalignment or imbalance issues using precision alignment tools. Proper alignment and balance reduce stress on bearings and extend their lifespan, contributing to the overall longevity of the motor.
  5. Temperature Monitoring: Monitor the motor’s temperature during operation using temperature sensors or thermal imaging techniques. Excessive heat can damage insulation, bearings, and other components. If the motor consistently operates at high temperatures, investigate the cause and take corrective actions, such as improving ventilation, reducing loads, or addressing any cooling system issues.
  6. Electrical Connections: Inspect and tighten electrical connections regularly to ensure secure and reliable connections. Loose or corroded connections can lead to voltage drops, increased resistance, and overheating. Check terminal blocks, wiring, and motor leads for any signs of damage or degradation. Properly torquing electrical connections and addressing any issues promptly helps maintain electrical integrity.
  7. Vibration Analysis: Perform regular vibration analysis to detect any abnormal vibration patterns that could indicate underlying issues. Vibration analysis tools and techniques can help identify unbalanced rotors, misalignment, bearing wear, or other mechanical problems. Addressing vibration issues early can prevent further damage and improve motor performance and longevity.
  8. Periodic Testing and Maintenance: Conduct periodic testing and maintenance based on the manufacturer’s recommendations and industry best practices. This may include insulation resistance testing, winding resistance testing, bearing lubrication checks, and other diagnostic tests. Such tests help identify potential problems before they escalate and allow for timely maintenance and repairs.
  9. Training and Documentation: Ensure that maintenance personnel are properly trained in electric motor maintenance practices. Provide training on inspection techniques, lubrication procedures, alignment methods, and other essential maintenance tasks. Maintain comprehensive documentation of maintenance activities, including inspection reports, maintenance schedules, and repair records.

By implementing these maintenance practices, motor owners can significantly prolong the lifespan of electric motors. Regular inspections, proper lubrication, cleaning, alignment, temperature monitoring, electrical connection maintenance, vibration analysis, periodic testing, and training contribute to the motor’s reliability, efficiency, and overall longevity.

electric motor

How do electric motors impact the overall productivity of manufacturing processes?

Electric motors have a significant impact on the overall productivity of manufacturing processes. Their versatility, reliability, and efficiency make them essential components in a wide range of industrial applications. Here’s a detailed explanation of how electric motors contribute to enhancing productivity in manufacturing:

  1. Mechanization and Automation: Electric motors serve as the primary power source for a vast array of industrial machinery and equipment. By providing mechanical power, electric motors enable mechanization and automation of manufacturing processes. They drive conveyor belts, pumps, compressors, robots, and other machinery, allowing for efficient material handling, assembly, and production operations. The use of electric motors in mechanized and automated systems reduces manual labor, accelerates production rates, and improves overall productivity.
  2. Precise Control and Repeatable Movements: Electric motors offer precise control over speed, position, and torque, enabling accurate and repeatable movements in manufacturing processes. This precision is crucial for tasks that require consistent and controlled operations, such as precision cutting, drilling, machining, and assembly. Electric motors allow for fine adjustments and control, ensuring that manufacturing operations are performed with high levels of accuracy and repeatability, which ultimately enhances productivity and product quality.
  3. High Speed and Acceleration: Electric motors are capable of achieving high rotational speeds and rapid acceleration, enabling fast-paced manufacturing processes. Motors with high-speed capabilities are utilized in applications that require quick operations, such as high-speed machining, packaging, and sorting. The ability of electric motors to rapidly accelerate and decelerate facilitates efficient cycle times and overall process throughput, contributing to increased productivity.
  4. Reliability and Durability: Electric motors are known for their reliability and durability, making them well-suited for demanding manufacturing environments. With proper maintenance, electric motors can operate continuously for extended periods, minimizing downtime due to motor failures. The reliability of electric motors ensures consistent and uninterrupted production, optimizing manufacturing productivity and reducing costly disruptions.
  5. Energy Efficiency: Electric motors have witnessed significant advancements in energy efficiency, leading to reduced energy consumption in manufacturing processes. Energy-efficient motors convert a higher percentage of electrical input power into useful mechanical output power, resulting in lower energy costs. By utilizing energy-efficient electric motors, manufacturers can achieve cost savings and improve the overall sustainability of their operations. Additionally, energy-efficient motors generate less heat, reducing the need for cooling and improving the overall efficiency of auxiliary systems.
  6. Integration with Control Systems: Electric motors can be seamlessly integrated with sophisticated control systems and automation technologies. This integration allows for centralized control, monitoring, and optimization of manufacturing processes. Control systems can regulate motor speed, torque, and performance based on real-time data, enabling adaptive and efficient operations. The integration of electric motors with control systems enhances the overall productivity by optimizing process parameters, minimizing errors, and facilitating seamless coordination between different stages of manufacturing.

Electric motors significantly impact the overall productivity of manufacturing processes by enabling mechanization, automation, precise control, high-speed operations, reliability, energy efficiency, and integration with advanced control systems. Their versatility and performance characteristics make them indispensable in a wide range of industries, including automotive, electronics, aerospace, food processing, and more. By harnessing the power of electric motors, manufacturers can streamline operations, improve product quality, increase throughput, and ultimately enhance productivity in their manufacturing processes.

electric motor

Can you explain the basic principles of electric motor operation?

An electric motor operates based on several fundamental principles of electromagnetism and electromagnetic induction. These principles govern the conversion of electrical energy into mechanical energy, enabling the motor to generate rotational motion. Here’s a detailed explanation of the basic principles of electric motor operation:

  1. Magnetic Fields: Electric motors utilize magnetic fields to create the forces necessary for rotation. The motor consists of two main components: the stator and the rotor. The stator contains coils of wire wound around a core and is responsible for generating a magnetic field. The rotor, which is connected to the motor’s output shaft, has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. This magnetic field interacts with the magnetic field produced by the rotor. The interaction between these two magnetic fields results in a rotational force, known as torque, that causes the rotor to rotate.
  3. Electromagnetic Induction: Electric motors can also operate on the principle of electromagnetic induction. In these motors, alternating current (AC) is supplied to the stator coils. The alternating current produces a changing magnetic field that induces a voltage in the rotor. This induced voltage then generates a current in the rotor, which creates its own magnetic field. The interaction between the stator’s magnetic field and the rotor’s magnetic field leads to rotation.
  4. Commutation: In certain types of electric motors, such as brushed DC motors, commutation is employed. Commutation refers to the process of reversing the direction of the current in the rotor’s electromagnets to maintain continuous rotation. This is achieved using a component called a commutator, which periodically switches the direction of the current as the rotor rotates. By reversing the current at the right time, the commutator ensures that the magnetic fields of the stator and the rotor remain properly aligned, resulting in continuous rotation.
  5. Output Shaft: The rotational motion generated by the interaction of magnetic fields is transferred to the motor’s output shaft. The output shaft is connected to the load or the device that needs to be driven, such as a fan, a pump, or a conveyor belt. As the motor rotates, the mechanical energy produced is transmitted through the output shaft, enabling the motor to perform useful work.

In summary, the basic principles of electric motor operation involve the generation and interaction of magnetic fields. By supplying an electric current to the stator and utilizing magnets or electromagnets in the rotor, electric motors create magnetic fields that interact to produce rotational motion. Additionally, the principle of electromagnetic induction allows for the conversion of alternating current into mechanical motion. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft to perform mechanical work.

China Standard CE Approved 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor IP55 for Water Pump, Compressor, Gear Reducer Fan Blower   vacuum pump and compressor	China Standard CE Approved 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor IP55 for Water Pump, Compressor, Gear Reducer Fan Blower   vacuum pump and compressor
editor by CX 2023-12-01