Tag Archives: electric drive motor

China Good quality Senka Oil Change to Electric 48V 60V 72V 2000W 3000W Drive Kit Motor Rear Axle Controller DC Motor vacuum pump adapter

Product Description

Voltage 48V/60V 60V 48V/60V/72V 48V/60V/72V 48V/60V/72V
Power 1000W 1500W 1500W 2000W 2000W
Rated speed 3000rpm 3000rpm 3300rpm 3300 3300
Rated current 22A 22A 22A 22A 22A
Insulation class B B F B B
Ourgoing cable length 1M 1M 1M 1M 1M
N.W 4.86KG 4.86KG 7.3KG 4.86KG 10KG
Size 25*16*16cm 25*16*16cm 25*16*16cm 25*16*16cm 25*16*16cm
           

HangZhou Senka Locomotive. Is 1 of the fast-developing tricycle manufacturers in China, which was located in HangZhou City ZheJiang Province, and specialized in research, manufacture and international sales of motor tricycles, cargo tricycle, electric mini car. Our company occupies 6520 square CHINAMFG and has 85 staff members. We have professional R&D team, and we can provide different shape & size of passenger tricycle, cargo tricycle, electric car. We have been accredited to ISO9001: 2008, and product quality well meets CCC national compulsive certification. And our annual production capability achieves 30000 sets. Via 6-year professional export experience, we have built a broad marketing channel, a CHINAMFG customer foundation. At present our main markets are Africa, Southeast Asia, South America and Middle East. “Good Quality, Reasonable Price, Best Service” is our goal. We warmly and sincerely welcome customers all over the world to visit our factory and look CHINAMFG to establishing long term cooperation and CHINAMFG relationship to make mutual benefit. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Car
Operating Speed: Low Speed
Function: Driving
Casing Protection: Closed Type
Structure and Working Principle: Brush
OEM: Yes
Customization:
Available

|

electric motor

What maintenance practices are essential for prolonging the lifespan of an electric motor?

Maintaining electric motors is crucial for prolonging their lifespan and ensuring optimal performance. Proper maintenance practices help prevent failures, minimize downtime, and maximize the efficiency and reliability of electric motors. Here’s a detailed explanation of essential maintenance practices for prolonging the lifespan of an electric motor:

  1. Regular Inspections: Conduct regular visual inspections of the motor to identify any signs of wear, damage, or loose connections. Inspect the motor’s external components, such as the housing, bearings, cooling fans, and cables. Look for any unusual noise, vibration, or overheating during operation, as these can indicate potential issues that require attention.
  2. Lubrication: Proper lubrication is vital for the smooth operation and longevity of electric motors. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants. Apply lubrication to bearings, shafts, and other moving parts as specified. Over-lubrication or using incompatible lubricants can cause overheating and premature wear, so it’s essential to follow the recommended practices.
  3. Cleaning: Keep the motor clean and free from dirt, dust, and debris that can accumulate over time. Regularly clean the motor’s exterior using a soft brush or compressed air. Ensure that cooling vents and fans are clear of any obstructions to maintain proper airflow and prevent overheating. Cleanliness helps prevent insulation damage and improves heat dissipation.
  4. Alignment and Balance: Misalignment or imbalance in the motor’s shaft and coupling can lead to excessive vibrations and premature wear. Regularly check and correct any misalignment or imbalance issues using precision alignment tools. Proper alignment and balance reduce stress on bearings and extend their lifespan, contributing to the overall longevity of the motor.
  5. Temperature Monitoring: Monitor the motor’s temperature during operation using temperature sensors or thermal imaging techniques. Excessive heat can damage insulation, bearings, and other components. If the motor consistently operates at high temperatures, investigate the cause and take corrective actions, such as improving ventilation, reducing loads, or addressing any cooling system issues.
  6. Electrical Connections: Inspect and tighten electrical connections regularly to ensure secure and reliable connections. Loose or corroded connections can lead to voltage drops, increased resistance, and overheating. Check terminal blocks, wiring, and motor leads for any signs of damage or degradation. Properly torquing electrical connections and addressing any issues promptly helps maintain electrical integrity.
  7. Vibration Analysis: Perform regular vibration analysis to detect any abnormal vibration patterns that could indicate underlying issues. Vibration analysis tools and techniques can help identify unbalanced rotors, misalignment, bearing wear, or other mechanical problems. Addressing vibration issues early can prevent further damage and improve motor performance and longevity.
  8. Periodic Testing and Maintenance: Conduct periodic testing and maintenance based on the manufacturer’s recommendations and industry best practices. This may include insulation resistance testing, winding resistance testing, bearing lubrication checks, and other diagnostic tests. Such tests help identify potential problems before they escalate and allow for timely maintenance and repairs.
  9. Training and Documentation: Ensure that maintenance personnel are properly trained in electric motor maintenance practices. Provide training on inspection techniques, lubrication procedures, alignment methods, and other essential maintenance tasks. Maintain comprehensive documentation of maintenance activities, including inspection reports, maintenance schedules, and repair records.

By implementing these maintenance practices, motor owners can significantly prolong the lifespan of electric motors. Regular inspections, proper lubrication, cleaning, alignment, temperature monitoring, electrical connection maintenance, vibration analysis, periodic testing, and training contribute to the motor’s reliability, efficiency, and overall longevity.

electric motor

Are there any emerging trends in electric motor technology, such as smart features?

Yes, there are several emerging trends in electric motor technology, including the integration of smart features. These trends aim to improve motor performance, efficiency, and functionality, while also enabling connectivity and advanced control capabilities. Here’s a detailed explanation of some of the emerging trends in electric motor technology:

  1. Internet of Things (IoT) Integration: Electric motors are becoming increasingly connected as part of the broader IoT ecosystem. IoT integration allows motors to communicate, share data, and be remotely monitored and controlled. By embedding sensors, communication modules, and data analytics capabilities, motors can provide real-time performance data, predictive maintenance insights, and energy consumption information. This connectivity enables proactive maintenance, optimized performance, and enhanced energy efficiency.
  2. Condition Monitoring and Predictive Maintenance: Smart electric motors are equipped with sensors that monitor various parameters such as temperature, vibration, and current. This data is analyzed in real-time to detect anomalies and potential faults. By implementing predictive maintenance algorithms, motor failures can be anticipated, enabling maintenance activities to be scheduled proactively. This trend reduces unplanned downtime, improves reliability, and optimizes maintenance costs.
  3. Advanced Motor Control and Optimization: Emerging electric motor technologies focus on advanced motor control techniques and optimization algorithms. These advancements allow for precise control of motor performance, adapting to changing load conditions, and optimizing energy efficiency. Additionally, sophisticated control algorithms enable motor systems to operate in coordination with other equipment, such as variable speed drives, power electronics, and energy storage systems, resulting in improved overall system efficiency.
  4. Energy Harvesting and Regenerative Features: Electric motors can harness energy through regenerative braking and energy harvesting techniques. Regenerative braking allows motors to recover and convert kinetic energy into electrical energy, which can be fed back into the system or stored for later use. Energy harvesting technologies, such as piezoelectric or electromagnetic systems, can capture ambient energy and convert it into usable electrical energy. These features enhance energy efficiency and reduce overall power consumption.
  5. Integration with Artificial Intelligence (AI) and Machine Learning (ML): The integration of electric motors with AI and ML technologies enables advanced motor control, optimization, and decision-making capabilities. AI and ML algorithms analyze motor performance data, identify patterns, and make real-time adjustments to optimize efficiency and performance. The combination of AI/ML with electric motors opens up possibilities for autonomous motor control, adaptive energy management, and intelligent fault detection.
  6. Miniaturization and Lightweight Design: Emerging trends in electric motor technology focus on miniaturization and lightweight design without compromising performance. This trend is particularly relevant for portable devices, electric vehicles, and aerospace applications. Advancements in materials, manufacturing processes, and motor design allow for smaller, lighter, and more powerful motors, enabling greater mobility, improved efficiency, and increased power density.

The integration of smart features in electric motor technology is driving advancements in connectivity, data analytics, predictive maintenance, advanced control, energy harvesting, AI/ML integration, and miniaturization. These trends are revolutionizing the capabilities and functionality of electric motors, making them more intelligent, efficient, and adaptable to various applications. As technology continues to evolve, electric motors are expected to play a crucial role in the ongoing transition towards smart and sustainable industries.

electric motor

What are the different types of electric motors available?

There are various types of electric motors available, each designed for specific applications and operating principles. These motors differ in their construction, power sources, and performance characteristics. Here is an overview of some common types of electric motors:

  1. DC Motors: DC (Direct Current) motors are widely used and come in different configurations. The most common types include brushed DC motors and brushless DC motors. Brushed DC motors use brushes and a commutator to switch the direction of current in the rotor, while brushless DC motors use electronic commutation. DC motors offer good speed control and torque characteristics, making them suitable for applications like robotics, electric vehicles, and small appliances.
  2. AC Motors: AC (Alternating Current) motors are classified into several types, including induction motors, synchronous motors, and universal motors. Induction motors are popular for their simplicity and reliability. They operate based on electromagnetic induction and are commonly used in industrial and residential applications. Synchronous motors operate at a constant speed and are often used in applications that require precise control, such as industrial machinery and synchronous clocks. Universal motors are designed to operate on both AC and DC power sources and are commonly found in household appliances like vacuum cleaners and power tools.
  3. Stepper Motors: Stepper motors are designed to move in discrete steps or increments, making them suitable for applications that require precise positioning. They are often used in robotics, 3D printers, CNC machines, and other automated systems. Stepper motors are available in various configurations, including permanent magnet stepper motors, variable reluctance stepper motors, and hybrid stepper motors.
  4. Servo Motors: Servo motors are a type of motor that combines a DC motor with a feedback control mechanism. They are known for their precise control over position, velocity, and acceleration. Servo motors are commonly used in robotics, industrial automation, and applications that require accurate motion control, such as robotic arms, RC vehicles, and camera gimbals.
  5. Linear Motors: Linear motors are designed to produce linear motion instead of rotational motion. They operate on similar principles as rotary motors but with a different mechanical arrangement. Linear motors find applications in high-speed transportation systems, cutting machines, and other systems that require linear motion without the need for mechanical conversion from rotary to linear motion.
  6. Haptic Motors: Haptic motors, also known as vibration motors, are small motors used to create tactile feedback or vibrations in electronic devices. They are commonly found in smartphones, game controllers, wearable devices, and other gadgets that require haptic feedback to enhance the user experience.

These are just a few examples of the different types of electric motors available. Each type has its own advantages, limitations, and specific applications. The selection of an electric motor depends on factors such as the required torque, speed, control, efficiency, and the specific needs of the application at hand.

China Good quality Senka Oil Change to Electric 48V 60V 72V 2000W 3000W Drive Kit Motor Rear Axle Controller DC Motor   vacuum pump adapter	China Good quality Senka Oil Change to Electric 48V 60V 72V 2000W 3000W Drive Kit Motor Rear Axle Controller DC Motor   vacuum pump adapter
editor by CX 2024-05-15

China manufacturer DC Gearless Brushless Encoder Delivery Robot Drive Electric Wheel Hub Servo Motor with CE with Good quality

Product Description

Product Description

HangZhou K-Easy Automation Co.,Limited is a professional manufacturer, specialize in R&D And production of AC drives. We have built up a comprehensive product family. Frequency inverters’ power covers the range from 0.4 to 630kW, and voltage range is between 220V and 480V. More than inverters are running smoothly 300, 000 units at different industrial sites.

 

  • The response frequency is up to 1.5KHz, which is especially suitable for applications requiring high-speed response;

  • Driver menu, control interface, parameter modification and writing operation are consistent with CHINAMFG A5 series servo driver;

  • The encoder interface of A-type servo driver is consistent with CHINAMFG A5 series servo driver, and it can directly operate with CHINAMFG A5 and A6 servo motors;

  • The driver can directly drive the direct drive motor, and can support up to 23 bit absolute encoder;

  • It is provided with electronic cam special machine and internal position special machine;

  • The driver is currently used in automation equipment such as manipulator, loading and unloading, winding machine, die-cutting machine, 3C processing, fine carving, textile, SCARA robot, tensile machine, capping machine, labeling machine, etc.

Product Parameters

Performance K-Drive
Applicable motors Asynchronous /synchronous motors
Starting torque 0.5Hz, 180% (sensor-less vector control) 0Hz, 200% (closed-loop vector control)
Speed adjustable range 1:200 (SVC), 1:1000 (VC)
Ambient temperature (no derating required) -10-50ºC (for most of the models)
Rated input voltage 208VAC-480VAC
Communication Modbus RTU//ASCII Profibus-DP, CANopen, etc.
Position control (fixed length, or angular positioning)
Field weakening control
Autotune online Online & Offline
Short-time ramp-up No trip
Customized features (software and/or hardware) Procurable with rich experience

Product Features

Company Profile

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: High-performance Transducer, Three Phase Transducer, General Transducer, Single-phase Transducer, High Frequency Converter Transducer
Output Type: Triple
Principle of Work: Vector Control Transducer
Switch Mode: High Carrier Frequency PWM Control
Main Circuit Type: Voltage
Voltage of Power Supply: Low Voltage Variable-Frequency Drive
Samples:
US$ 78/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

How do manufacturers ensure the quality and reliability of electric motors?

Manufacturers employ several measures and quality control processes to ensure the quality and reliability of electric motors. These measures span from design and manufacturing stages to testing and inspections. Here’s a detailed explanation of how manufacturers ensure the quality and reliability of electric motors:

  1. Robust Design and Engineering: Manufacturers invest significant effort in designing electric motors with robust engineering principles. This involves careful selection of materials, precise calculations, and simulation techniques to ensure optimal performance and durability. Thorough design reviews and analysis are conducted to identify potential issues and optimize the motor’s design for reliability.
  2. Stringent Manufacturing Processes: Manufacturers adhere to stringent manufacturing processes to maintain consistent quality standards. This includes using advanced manufacturing technologies, automated assembly lines, and precision machining to ensure accurate and reliable motor production. Strict quality control measures are implemented at each stage of manufacturing, including material inspection, component testing, and assembly verification.
  3. Quality Control and Testing: Comprehensive quality control and testing procedures are implemented to assess the performance and reliability of electric motors. This includes electrical testing to verify motor characteristics such as voltage, current, power consumption, and efficiency. Mechanical testing is conducted to assess factors like torque, vibration, and noise levels. Additionally, endurance tests are performed to evaluate the motor’s performance over extended operating periods.
  4. Certifications and Compliance: Electric motor manufacturers often obtain certifications and comply with industry standards to ensure quality and reliability. These certifications, such as ISO 9001, IEC standards, and UL certifications, demonstrate that the manufacturer follows recognized quality management systems and meets specific requirements for product safety, performance, and reliability. Compliance with these standards provides assurance to customers regarding the motor’s quality.
  5. Reliability Testing: Manufacturers conduct extensive reliability testing to assess the motor’s performance under various conditions and stress factors. This may include accelerated life testing, temperature and humidity testing, thermal cycling, and load testing. Reliability testing helps identify potential weaknesses, evaluate the motor’s robustness, and ensure it can withstand real-world operating conditions without compromising performance or reliability.
  6. Continuous Improvement and Feedback: Manufacturers emphasize continuous improvement by gathering feedback from customers, field testing, and warranty analysis. By monitoring the performance of motors in real-world applications, manufacturers can identify any issues or failure patterns and make necessary design or process improvements. Customer feedback also plays a crucial role in driving improvements and addressing specific requirements.
  7. Quality Assurance and Documentation: Manufacturers maintain comprehensive documentation throughout the production process to ensure traceability and quality assurance. This includes recording and tracking raw materials, components, manufacturing parameters, inspections, and testing results. Proper documentation allows manufacturers to identify any deviations, track the motor’s history, and enable effective quality control and post-production analysis.
  8. Supplier Evaluation and Control: Manufacturers carefully evaluate and select reliable suppliers for motor components and materials. Supplier quality control processes are established to ensure that the sourced components meet the required specifications and quality standards. Regular supplier audits, inspections, and quality assessments are conducted to maintain a consistent supply chain and ensure the overall quality and reliability of the motors.

By implementing these measures, manufacturers ensure the quality and reliability of electric motors. Through robust design, stringent manufacturing processes, comprehensive testing, compliance with standards, continuous improvement, and effective quality control, manufacturers strive to deliver electric motors that meet or exceed customer expectations for performance, durability, and reliability.

electric motor

How do electric motors contribute to the precision of tasks like robotics?

Electric motors play a critical role in enabling the precision of tasks in robotics. Their unique characteristics and capabilities make them well-suited for precise and controlled movements required in robotic applications. Here’s a detailed explanation of how electric motors contribute to the precision of tasks in robotics:

  1. Precise Positioning: Electric motors offer precise positioning capabilities, allowing robots to move with accuracy and repeatability. By controlling the motor’s speed, direction, and rotation, robots can achieve precise position control, enabling them to perform tasks with high levels of accuracy. This is particularly important in applications that require precise manipulation, such as assembly tasks, pick-and-place operations, and surgical procedures.
  2. Speed Control: Electric motors provide precise speed control, allowing robots to perform tasks at varying speeds depending on the requirements. By adjusting the motor’s speed, robots can achieve smooth and controlled movements, which is crucial for tasks that involve delicate handling or interactions with objects or humans. The ability to control motor speed precisely enhances the overall precision and safety of robotic operations.
  3. Torque Control: Electric motors offer precise torque control, which is essential for tasks that require forceful or delicate interactions. Torque control allows robots to exert the appropriate amount of force or torque, enabling them to handle objects, perform assembly tasks, or execute movements with the required precision. By modulating the motor’s torque output, robots can delicately manipulate objects without causing damage or apply sufficient force for tasks that demand strength.
  4. Feedback Control Systems: Electric motors in robotics are often integrated with feedback control systems to enhance precision. These systems utilize sensors, such as encoders or resolvers, to provide real-time feedback on the motor’s position, speed, and torque. The feedback information is used to continuously adjust and fine-tune the motor’s performance, compensating for any errors or deviations and ensuring precise movements. The closed-loop nature of feedback control systems allows robots to maintain accuracy and adapt to dynamic environments or changing task requirements.
  5. Dynamic Response: Electric motors exhibit excellent dynamic response characteristics, enabling quick and precise adjustments to changes in command signals. This responsiveness is particularly advantageous in robotics, where rapid and accurate movements are often required. Electric motors can swiftly accelerate, decelerate, and change direction, allowing robots to perform intricate tasks with precision and efficiency.
  6. Compact and Lightweight: Electric motors are available in compact and lightweight designs, making them suitable for integration into various robotic systems. Their small size and high power-to-weight ratio allow for efficient utilization of space and minimal impact on the overall weight and size of the robot. This compactness and lightness contribute to the overall precision and maneuverability of robotic platforms.

Electric motors, with their precise positioning, speed control, torque control, feedback control systems, dynamic response, and compactness, significantly contribute to the precision of tasks in robotics. These motors enable robots to execute precise movements, manipulate objects with accuracy, and perform tasks that require high levels of precision. The integration of electric motors with advanced control algorithms and sensory feedback systems empowers robots to adapt to various environments, interact safely with humans, and achieve precise and controlled outcomes in a wide range of robotic applications.

electric motor

How do electric motors handle variations in load, speed, and torque?

Electric motors are designed to handle variations in load, speed, and torque through various control mechanisms and techniques. Here’s a detailed explanation of how electric motors handle these variations:

  1. Load Variations: Electric motors can handle variations in load by adjusting the amount of torque they produce. When the load on the motor increases, such as when additional resistance or weight is applied, the motor responds by increasing the torque output. This is achieved through the control of the motor’s input current or voltage. For example, in DC motors, increasing the current supplied to the motor can compensate for the increased load, ensuring that the motor can continue to operate at the desired speed.
  2. Speed Variations: Electric motors can handle variations in speed by adjusting the frequency of the power supply or by varying the voltage applied to the motor. In AC motors, the speed is determined by the frequency of the alternating current, so changing the frequency can alter the motor’s speed. In DC motors, the speed can be controlled by adjusting the voltage applied to the motor. This can be achieved using electronic speed controllers (ESCs) or by employing pulse width modulation (PWM) techniques to control the average voltage supplied to the motor.
  3. Torque Variations: Electric motors can handle variations in torque by adjusting the current flowing through the motor windings. The torque produced by a motor is directly proportional to the current flowing through the motor. By increasing or decreasing the current, the motor can adjust its torque output to match the requirements of the load. This can be accomplished through various control methods, such as using motor drives or controllers that regulate the current supplied to the motor based on the desired torque.
  4. Control Systems: Electric motors often incorporate control systems to handle variations in load, speed, and torque more precisely. These control systems can include feedback mechanisms, such as encoders or sensors, which provide information about the motor’s actual speed or position. The feedback signals are compared to the desired speed or position, and the control system adjusts the motor’s input parameters accordingly to maintain the desired performance. This closed-loop control allows electric motors to respond dynamically to changes in load, speed, and torque.

In summary, electric motors handle variations in load, speed, and torque through various control mechanisms. By adjusting the current, voltage, or frequency of the power supply, electric motors can accommodate changes in load and speed requirements. Additionally, control systems with feedback mechanisms enable precise regulation of motor performance, allowing the motor to respond dynamically to variations in load, speed, and torque. These control techniques ensure that electric motors can operate effectively across a range of operating conditions and adapt to the changing demands of the application.

China manufacturer DC Gearless Brushless Encoder Delivery Robot Drive Electric Wheel Hub Servo Motor with CE   with Good quality China manufacturer DC Gearless Brushless Encoder Delivery Robot Drive Electric Wheel Hub Servo Motor with CE   with Good quality
editor by CX 2024-05-14

China supplier 22kw Ye2 Series Pump Drive Three-Phase AC Electric Induction Asynchronous Motor with Good quality

Product Description

Product Description

Features: High efficiency and energy saving, low noise and little vibration. Insulation class: F;Protection class:IP54 or IP55.

General purpose including cutting machines, pumps, fans, conveyors, machines tools of farm duty and food process.

The altitude not exceeding 1000m above sea level. The ambient temperature subject to seasonal variations but no exceeding+40ºC and not less than-15ºC.

Company Profile

ZheJiang Lanyoung Electromechanical Co., Ltd was originated from 1988, established in 2001, it owns ZheJiang Lanyoung Electromechanical Co., Ltd HangZhouShan City Branch and ZHangZhoug HangZhouang Electromechanical Co., Ltd, won the honorary title of “top 10 brands of brand network in 2019” and “excellent demonstration unit of ZHangZhoug focusing on quality and brand-making”. We are a modern company combining mechanical and electrical products research, development, production, sales and service with a long history and rich experience in production. We are experts of water pumps, motors, and fans products, the main products are stainless steel pumps, plastic corrosion-resistant submersible pumps, DC electric pumps, self-priming pump, machine tool cooling pumps, corrosion resistant pumps, sewage pumps, oil-immersed submersible pumps, blowers, medium pressure fan, multi-wing fan and so on, and we also possess practical new-type patent for a mini submersible pump. The above products can be all customized according to customer’s requirement. We have special advantages that is different from other manufacturing companies.

Product Parameters

Type  Power Pole/Speed Volt/Frequency Insulation Protection Motor housing Mount
 kw /HP
80M2 0.55/0.75 6/885rpm 380V/50HZ class F IP55 Cast Iron B3
90S 0.75/1 6/910rpm 380V/50HZ class F IP55 Cast Iron B3
90L 1.1/1.5 6/910rpm 380V/50HZ class F IP55 Cast Iron B3
100L 1.5/2 6/940rpm 380V/50HZ class F IP55 Cast Iron B3
112M 2.2/3 6/940rpm 380V/50HZ class F IP55 Cast Iron B3
132S 3/4 6/960rpm 380V/50HZ class F IP55 Cast Iron B3
132M1 4/5.5 6/960rpm 380V/50HZ class F IP55 Cast Iron B3
132M2 5.5/7.5 6/960rpm 380V/50HZ class F IP55 Cast Iron B3
160M 7.5/10 6/970rpm 380V/50HZ class F IP55 Cast Iron B3
160L 11/15 6/970rpm 380V/50HZ class F IP55 Cast Iron B3
180L 15/20 6/970rpm 380V/50HZ class F IP55 Cast Iron B3
200L1 18.5/25 6/980rpm 380V/50HZ class F IP55 Cast Iron B3
200L2 22/30 6/980rpm 380V/50HZ class F IP55 Cast Iron B3
225M 30/40 6/980rpm 380V/50HZ class F IP55 Cast Iron B3
250M 37/50 6/980rpm 380V/50HZ class F IP55 Cast Iron B3
280S 45/60 6/985rpm 380V/50HZ class F IP55 Cast Iron B3
280M 55/75 6/985rpm 380V/50HZ class F IP55 Cast Iron B3
315S 75/100 6/990rpm 380V/50HZ class F IP55 Cast Iron B3

Detailed Photos

 

Packaging & Shipping

 

Certifications

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 29/Piece
1 Piece(Min.Order)

|

Order Sample

Blue
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

What factors should be considered when selecting the right electric motor for a task?

When selecting the right electric motor for a task, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed overview of the factors that should be taken into account:

  1. Load Requirements: The first consideration is understanding the specific load requirements of the task. This includes factors such as the torque or force needed to drive the load, the speed range required, and any variations in load that may occur. By accurately assessing the load requirements, you can determine the appropriate motor type, size, and characteristics needed to handle the task effectively.
  2. Motor Type: Different motor types are suited for specific applications. Common motor types include AC induction motors, brushless DC motors, brushed DC motors, and stepper motors. Each type has its own advantages and limitations in terms of speed range, torque characteristics, efficiency, control requirements, and cost. Choosing the right motor type depends on the task’s specific requirements and the desired performance.
  3. Power Supply: Consider the available power supply for the motor. Determine whether the application requires AC or DC power and the voltage and frequency range of the power source. Ensure that the motor’s power requirements align with the available power supply to avoid compatibility issues.
  4. Efficiency and Energy Consumption: Efficiency is an important factor to consider, especially for applications where energy consumption is a concern. Higher motor efficiency translates to lower energy losses and reduced operating costs over the motor’s lifetime. Look for motors with high efficiency ratings to minimize energy consumption and improve overall system efficiency.
  5. Environmental Factors: Assess the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, and vibration. Some motors are specifically designed to withstand harsh environmental conditions, while others may require additional protection or enclosures. Choosing a motor that is suitable for the intended environment will ensure reliable and long-lasting operation.
  6. Control and Feedback Requirements: Determine whether the application requires precise control over motor speed, position, or torque. Some tasks may benefit from closed-loop control systems that incorporate feedback devices like encoders or sensors to provide accurate motor control. Evaluate the control and feedback requirements of the task and select a motor that is compatible with the desired control mechanism.
  7. Physical Constraints: Consider any physical constraints or limitations that may impact motor selection. These constraints may include space restrictions, weight limitations, mounting options, and mechanical compatibility with other components or equipment. Ensure that the chosen motor can physically fit and integrate into the system without compromising performance or functionality.
  8. Cost and Budget: Finally, consider the budget and cost constraints associated with the motor selection. Evaluate the initial purchase cost of the motor as well as the long-term operating costs, including maintenance and energy consumption. Strive to strike a balance between performance and cost-effectiveness to ensure the best value for your specific application.

By considering these factors, you can make an informed decision when selecting the right electric motor for a task. It is crucial to thoroughly analyze the requirements and match them with the motor’s specifications to achieve optimal performance, reliability, and efficiency.

electric motor

Can electric motors be used in renewable energy systems like wind turbines?

Yes, electric motors can be used in renewable energy systems like wind turbines. In fact, electric motors play a crucial role in converting the kinetic energy of the wind into electrical energy in wind turbines. Here’s a detailed explanation of how electric motors are utilized in wind turbines and their role in renewable energy systems:

Wind turbines are designed to capture the energy from the wind and convert it into electrical power. Electric motors are used in wind turbines to drive the rotation of the turbine blades and generate electricity through the following process:

  1. Wind Capture: The wind turbine blades are designed to efficiently capture the kinetic energy of the wind. As the wind blows, it causes the blades to rotate.
  2. Blade Rotation: The rotational motion of the turbine blades is achieved through electric motors known as pitch motors. Pitch motors adjust the angle or pitch of the blades to optimize their orientation relative to the wind direction. The electric motors drive the mechanical mechanism that rotates the blades, allowing them to capture the maximum energy from the wind.
  3. Power Generation: The rotation of the wind turbine blades drives the main shaft of the turbine, which is connected to an electric generator. The generator consists of another electric motor known as the generator motor or generator rotor. The rotational motion of the generator rotor within a magnetic field induces an electrical current in the generator’s stator windings, producing electricity.
  4. Power Conversion and Distribution: The electricity generated by the wind turbine’s generator motor is typically in the form of alternating current (AC). To make it compatible with the electrical grid or local power system, the AC power is converted to the appropriate voltage and frequency using power electronics such as inverters. These power electronics may also incorporate electric motors for various conversion and control functions.
  5. Integration with Renewable Energy Systems: Wind turbines, equipped with electric motors, are integrated into renewable energy systems to contribute to the generation of clean and sustainable power. Multiple wind turbines can be connected together to form wind farms, which collectively generate significant amounts of electricity. The electricity produced by wind turbines can be fed into the electrical grid, used to power local communities, or stored in energy storage systems for later use.

Electric motors in wind turbines enable the efficient conversion of wind energy into electrical energy, making wind power a viable and renewable energy source. The advancements in motor and generator technologies, along with control systems and power electronics, have enhanced the performance, reliability, and overall efficiency of wind turbines. Additionally, electric motors allow for precise control and adjustment of the turbine blades, optimizing the energy capture and minimizing the impact of varying wind conditions.

Overall, the use of electric motors in wind turbines is instrumental in harnessing the power of wind and contributing to the generation of clean and sustainable energy in renewable energy systems.

electric motor

How do electric motors generate motion and mechanical work?

Electric motors generate motion and mechanical work through the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors accomplish this:

  1. Magnetic Fields: Electric motors consist of a stationary part called the stator and a rotating part called the rotor. The stator contains coils of wire that are supplied with an electric current, creating a magnetic field around them. The rotor, on the other hand, typically has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor creates a rotational force, also known as torque. This torque causes the rotor to start rotating.
  3. Electromagnetic Induction: In certain types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current (AC) is supplied to the stator, it creates a changing magnetic field. This changing magnetic field induces voltage in the rotor, which leads to the flow of current in the rotor. The current in the rotor produces its own magnetic field, and the interaction between the stator’s magnetic field and the rotor’s magnetic field results in rotation.
  4. Commutation: In motors that use direct current (DC), such as brushed DC motors, commutation is employed. Commutation is the process of reversing the direction of current in the rotor’s electromagnets as the rotor rotates. This is done using a component called a commutator, which ensures that the magnetic fields of the rotor and the stator are always properly aligned. By periodically reversing the current, the commutator allows for continuous rotation.
  5. Conversion of Electrical Energy to Mechanical Energy: As the rotor rotates, the mechanical energy is produced. The rotational motion of the rotor is transferred to the motor’s output shaft, which is connected to the load or the device that needs to be driven. The mechanical work is performed as the output shaft drives the load, such as spinning a fan blade, rotating a conveyor belt, or powering a machine.

In summary, electric motors generate motion and mechanical work by utilizing the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. The electric current flowing through the stator’s coils creates a magnetic field that interacts with the magnetic field of the rotor, producing torque and initiating rotation. In some motors, electromagnetic induction is employed, where a changing magnetic field induces voltage and current in the rotor, leading to rotation. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft, enabling the motor to perform mechanical work by driving the load.

China supplier 22kw Ye2 Series Pump Drive Three-Phase AC Electric Induction Asynchronous Motor   with Good quality China supplier 22kw Ye2 Series Pump Drive Three-Phase AC Electric Induction Asynchronous Motor   with Good quality
editor by CX 2024-04-16

China ZLTECH single shaft 150w 8inch 24V 200RPM 120kg load electric gearless DC drive wheel hub motor for AGV robot motor armature

Guarantee: 3months-1year
Product Quantity: ZLLG80ASM250-L V3.
Use: Robotic, AGV
Variety: SERVO MOTOR
Torque: 5.5n.m
Construction: Long lasting Magnet
Commutation: Brushless
Defend Attribute: Ip54
Velocity(RPM): 200RPM
Constant Present(A): 6.5A
Efficiency: eighty%
Tire diameter: 200mm
Poles No (Pair): fifteen polos
Load capability: 120kg/2 wheels
Encoder: 4096-wire encoder
Tire: Rubber tire
Precision: ±1RPM
Max torque: 16N.m
Max existing: 19A
Max velocity: 260RPM
Transfer Velocity(m/s): 2.1-2.7
Packaging Specifics: Package deal dimension: 41cm*33cm*23.5cm4pcs per carton Factory immediate source 24V 720W 15Kn Assist customization Unique vibrator for unloading DC vibration motor Dump truck vibrator 14.9kg/4pcs

ZLTECH single shaft 150w 8inch 24V 200RPM 120kg load electrical gearless DC drive wheel hub motor for AGV robot Merchandise Software Parameters & Dimensions Information Gain Comparable Goods Setting & China Manufacture High Precision CNC Turning Milling Aluminum Common Shaft Collar Gear Certifications & Cooparations Packaging & CZPT 2802 Stepper Motor Driver Board Electronic Temperature And Humidity Controller For KCM Transport

Benefits of a Planetary Motor

A planetary motor has many benefits. Its compact design and low noise makes it a good choice for any application. Among its many uses, planetary gear motors are found in smart cars, consumer electronics, intelligent robots, communication equipment, and medical technology. They can even be found in smart homes! Read on to discover the benefits of a planetary gear motor. You’ll be amazed at how versatile and useful it is!
Motor

Self-centering planet gears ensure a symmetrical force distribution

A planetary motor is a machine with multiple, interlocking planetary gears. The output torque is inversely proportional to the diameters of the planets, and the transmission size has no bearing on the output torque. A torsional stress analysis of the retaining structure for this type of motor found a maximum shear stress of 64 MPa, which is equivalent to a safety factor of 3.1 for 6061 aluminum. Self-centering planet gears are designed to ensure a symmetrical force distribution throughout the transmission system, with the weakest component being the pinions.
A planetary gearbox consists of ring and sun gears. The pitch diameters of ring and planet gears are nearly equal. The number of teeth on these gears determines the average gear-ratio per output revolution. This error is related to the manufacturing precision of the gears. The effect of this error is a noise or vibration characteristic of the planetary gearbox.
Another design for a planetary gearbox is a traction-based variant. This design eliminates the need for timing marks and other restrictive assembly conditions. The design of the ring gear is similar to that of a pencil sharpener mechanism. The ring gear is stationary while planet gears extend into cylindrical cutters. When placed on the sun’s axis, the pencil sharpening mechanism revolves around the ring gear to sharpen the pencil.
The JDS eliminates the need for conventional planetary carriers and is mated with the self-centering planet gears by dual-function components. The dual-function components synchronize the rolling motion and traction of the gears. They also eliminate the need for a carrier and reduce the force distribution between the rotor and stator.

Metal gears

A planetary motor is a type of electric drive that uses a series of metal gears. These gears share a load attached to the output shaft to generate torque. The planetary motor is often CNC controlled, with extra-long shafts, which allow it to fit into very compact designs. These gears are available in sizes from seven millimeters to 12 millimeters. They can also be fitted with encoders.
Planetary gearing is widely used in various industrial applications, including automobile transmissions, off-road transmissions, and wheel drive motors. They are also used in bicycles to power the shift mechanism. Another use for planetary gearing is as a powertrain between an internal combustion engine and an electric motor. They are also used in forestry applications, such as debarking equipment and sawing. They can be used in other industries as well, such as pulp washers and asphalt mixers.
Planetary gear sets are composed of three types of gears: a sun gear, planet gears, and an outer ring. The sun gear transfers torque to the planet gears, and the planet gears mesh with the outer ring gear. Planet carriers are designed to deliver high-torque output at low speeds. These gears are mounted on carriers that are moved around the ring gear. The planet gears mesh with the ring gears, and the sun gear is mounted on a moveable carrier.
Plastic planetary gear motors are less expensive to produce than their metal counterparts. However, plastic gears suffer from reduced strength, rigidity, and load capacity. Metal gears are generally easier to manufacture and have less backlash. Plastic planetary gear motor bodies are also lighter and less noisy. Some of the largest plastic planetary gear motors are made in collaboration with leading suppliers. When buying a plastic planetary gear motor, be sure to consider what materials it is made of.
Motor

Encoder

The Mega Torque Planetary Encoder DC Geared Motor is designed with a Japanese Mabuchi motor RS-775WC, a 200 RPM base motor. It is capable of achieving stall torque at low speeds, which is impossible to achieve with a simple DC motor. The planetary encoder provides five pulses per revolution, making it perfect for applications requiring precise torque or position. This motor requires an 8mm hex coupling for proper use.
This encoder has a high resolution and is suitable for ZGX38REE, ZGX45RGG and ZGX50RHH. It features a magnetic disc and poles and an optical disc to feed back signals. It can count paulses as the motor passes through a hall on the circuit board. Depending on the gearbox ratio, the encoder can provide up to two million transitions per rotation.
The planetary gear motor uses a planetary gear system to distribute torque in synchrony. This minimizes the risk of gear failure and increases the overall output capacity of the device. On the other hand, a spur gear motor is a simpler design and cheaper to produce. The spur gear motor works better for lower torque applications as each gear bears all the load. As such, the torque capacity of the spur gear motor is lower than that of a planetary gear motor.
The REV UltraPlanetary gearbox is designed for FTC and has three different output shaft options. The output shaft is made of 3/8-inch hex, allowing for flexible shaft replacement. These motors are a great value as they can be used to meet a wide range of power requirements. The REV UltraPlanetary gearbox and motor are available for very reasonable prices and a female 5mm hex output shaft can be used.

Durability

One of the most common questions when selecting a planetary motor is “How durable is it?” This is a question that’s often asked by people. The good news is that planetary motors are extremely durable and can last for a long time if properly maintained. For more information, read on! This article will cover the durability and efficiency of planetary gearmotors and how you can choose the best one for your needs.
First and foremost, planetary gear sets are made from metal materials. This increases their lifespan. The planetary gear set is typically made of metals such as nickel-steel and steel. Some planetary gear motors use plastic. Steel-cut gears are the most durable and suitable for applications that require more torque. Nickel-steel gears are less durable, but are better able to hold lubricant.
Durability of planetary motor gearbox is important for applications requiring high torque versus speed. VEX VersaPlanetary gearboxes are designed for FRC(r) use and are incredibly durable. They are expensive, but they are highly customizable. The planetary gearbox can be removed for maintenance and replacement if necessary. Parts for the gearbox can be purchased separately. VEX VersaPlanetary gearboxes also feature a pinion clamped onto the motor shaft.
Dynamic modeling of the planetary gear transmission system is important for understanding its durability. In previous studies, uncoupled and coupled meshing models were used to investigate the effect of various design parameters on the vibration characteristics of the planetary gear system. This analysis requires considering the role of the mesh stiffness, structure stiffness, and moment of inertia. Moreover, dynamic models for planetary gear transmission require modeling the influence of multiple parameters, such as mesh stiffness and shaft location.
Motor

Cost

The planetary gear motor has multiple contact points that help the rotor rotate at different speeds and torques. This design is often used in stirrers and large vats of liquid. This type of motor has a low initial cost and is more commonly found in low-torque applications. A planetary gear motor has multiple contact points and is more effective for applications requiring high torque. Gear motors are often found in stirring mechanisms and conveyor belts.
A planetary gearmotor is typically made from four mechanically linked rotors. They can be used for various applications, including automotive and laboratory automation. The plastic input stage gears reduce noise at higher speeds. Steel gears can be used for high torques and a modified lubricant is often added to reduce weight and mass moment of inertia. Its low-cost design makes it an excellent choice for robots and other applications.
There are many different types of planetary gear motors available. A planetary gear motor has three gears, the sun gear and planet gears, with each sharing equal amounts of work. They are ideal for applications requiring high torque and low-resistance operation, but they require more parts than their single-stage counterparts. The steel cut gears are the most durable, and are often used in applications that require high speeds. The nickel-steel gears are more absorptive, which makes them better for holding lubricant.
A planetary gear motor is a high-performance electrical vehicle motor. A typical planetary gear motor has a 3000 rpm speed, a peak torque of 0.32 Nm, and is available in 24V, 36V, and 48V power supply. It is also quiet and efficient, requiring little maintenance and offering greater torque to a modern electric car. If you are thinking of buying a planetary gear motor, be sure to do a bit of research before purchasing one.

China ZLTECH single shaft 150w 8inch 24V 200RPM 120kg load electric gearless DC drive wheel hub motor for AGV robot     motor armatureChina ZLTECH single shaft 150w 8inch 24V 200RPM 120kg load electric gearless DC drive wheel hub motor for AGV robot     motor armature
editor by czh 2023-02-22

China factory China Factory Price Direct Drive Motor for Precision Agriculture BLDC Motor12V 24V Electric Steering Motor with Free Design Custom

Solution Description

1.1.Motorparameterdescription
one.2.Specification
Motor: 12v 50w
Continuous present 6A, maximum peak present 10A (1s)
DC functioning power +9~18vdc
Functioning mode: speed mode, torque mode

one.3.Conditionsofuse
one.3.1Power source:
Rated working electrical power: 12vdc
Limit energy supply variety: 9–18vdc
It can supply instantaneous existing overload capability of 2 occasions ongoing present
one.3.2Feedback ingredient:

Incremental encoder (conventional item), absolute encoder(if you want complete encoder, remember to suggest in progress).
one.3.3Use environment:
Running temperature: -25~55°C (primarily based on atmosphere temperature) Storage temperature: -35~65°C (primarily based on atmosphere temperature)
Humidity: 5%–ninety%RH, condensation (25°C)
Security stage: IP65,
Insulation functionality: enter to the chassis DC600V, leakage recent .07mA.The insulation resistance is twenty MΩ or a lot more.
3-evidence needs: meet up with the requirements of 3 defenses (dust, moisture, salt spray).
Vibration demands: Frequency 5Hz ~ 25Hz, amplitude 3mm, .09g. Frequency 25Hz~200Hz, amplitude 1.47mm, 116g.
Horizontal, vertical, and longitudinal directions are thirty min in every single path.
Cooling approach: normal cooling
II.Functional complex indicators
two.1Mainfunction
Operating mode: Speed method, torque mode
Feedback: Incremental encoder (conventional item), complete encoder(if you need absolute encoder, please recommend in progress).
Handle: RS232, CAN, -5V analog sign
Can be controlled by can bus networking
Comprehend motor pace manage and knowledge studying via rs232
External manage begin/quit
Regenerative
LED indicator
Can be managed by CAN bus network
RS232 handle and read through the motor velocity
Inside temperature monitoring of drive
Overcurrent and overload defense

Overvoltage and undervoltage security
Temperature security
Locked-rotor and in excess of pace protection
Motor short circuit protection
two.2.Workingmodeconfigurationtable

Running
mode
Control instruction Feedback part
Pace manner RS232 CAN Incremental encoder
complete encoder
  Analog voltage -5v    
Place manner RS232 CAN Incremental encoder complete encoder

 

Solitary-section motors have a stator. They do not have the rotating magnetic subject attributes of polyphase or polyphase motors. The magnetic subject produced by the stator windings is pulsating, not rotating. When the rotor is stationary, the enlargement and contraction of the stator’s magnetic area generate an electrical current in the rotor. The recent produces the rotor magnetic area with the opposite polarity to the stator magnetic discipline. The reverse polarity applies rotational power to the upper and decrease parts of the rotor. Considering that this pressure passes through the centre of the rotor, it continues to be equivalent in every direction, maintaining the rotor stationary. If the rotor commences to change, it carries on to switch in the route it started, simply because the rotor’s momentum creates a rotational power in that path. Solitary-phase motors are utilized in lower-electricity applications this sort of as ceiling supporters, mixer grinders, and house appliances this sort of as transportable power equipment.
An AC motor is a variety of motor that utilizes the phenomenon of electromagnetic induction. AC electrical power drives the motor. It is a current that periodically reverses direction and changes its magnitude of the recent above time. This existing is the opposite of a direct present or “DC” which flows in only one route. AC motors can provide a relatively productive way to produce mechanical strength from a simple electrical enter sign.

China factory China Factory Price Direct Drive Motor for Precision Agriculture BLDC Motor12V 24V Electric Steering Motor     with Free Design Custom

China Best Sales CZPT Low Speed 4096 Encoder 6.5inch 500W 22n. M 48V 17A 200kg Load DC Electric Brushless Agv Drive Wheel Hub Motor wholesaler

Solution Description

Zltech reduced speed 4096 encoder 6.5inch 500W 22n. M 48V 17A 200kg Load dc Electric Brushless Agv drive wheel Hub Motor

 

FAQ

1. Factory or trader?
We are manufacturing facility, and have expert R&D team as launched in company data.

two. How about the shipping?
– Sample: 3-5 times.
– Bulk buy: 15-30 days.

3. What is your after-revenue providers?
one. Free maintenance within twelve months assure, life time consultant.
2. Specialist remedies in installation and maintence.

four. Why decide on us?
one. Factory Value & 24/7 soon after-sale services.
2. From mold customization to material processing and welding, from good components to concluded assembly, 72 processes, 24 handle factors, rigorous aging, finished merchandise inspection.

 

Polyphase motors can be possibly two-section or three-section motors. They function like single-phase induction motors, but equally single-period and polyphase motors work on a rotating magnetic discipline. Their rotating magnetic fields are created by two- or three-stage currents passing through two or far more sets of coils. The rotating magnetic area makes torque. Polyphase motors are used in purposes that demand higher power, this kind of as the electricity push of compressors, hydraulic pumps, air conditioning compressors, and irrigation pumps.
Polyphase motors can be either two-phase or 3-period motors. They work like one-section induction motors, but each solitary-phase and polyphase motors work on a rotating magnetic field. Their rotating magnetic fields are generated by two- or 3-stage currents passing through two or much more sets of coils. The rotating magnetic field generates torque. Polyphase motors are utilised in purposes that call for high electricity, this kind of as the energy travel of compressors, hydraulic pumps, air conditioning compressors, and irrigation pumps.

China Best Sales CZPT Low Speed 4096 Encoder 6.5inch 500W 22n. M 48V 17A 200kg Load DC Electric Brushless Agv Generate Wheel Hub Motor     wholesaler