Tag Archives: concrete vibrator motor

China Best Sales High Rpm 220V 0.75kw Concrete Electric Vibrator Motor Price with high quality

Product Description

high rpm 220v 0.75kw concrete electric vibrator motor price

Parameters of Vibrating Motor

Model Rated speed 
[rpm]
Vibrating Force
[KN]
Power
[kw]
Current
[A]
Efficiency
[%]
Weight 
[kg]
Bolt
XVM0.7-2 3000 0.7 0.15 0.38 70 14 M12
XVM1.5-2 1.5 0.15 0.38 70 15 M12
XVM2.5-2 2.5 0.25 0.58 76 16 M12
XVM 5-2 5 0.40 1.01 72 23 M16
XVM 8-2 8 0.75 1.76 74 42 M20
XVM 16-2 16 1.10 2.80 70 58 M20
XVM 20-2 25 1.80 4.30 71 60 M20
XVM 30-2 32 2.20 5.10 73 95 M20
XVM 45-2 50 3.50 8.18 73 200 M24
XVM 1.2-4 1500 1.2 0.07 0.30 60 14 M12
XVM 2.5-4 2 0.10 0.32 66 18 M12
XVM 5-4 5 0.20 0.65 70 27 M16
XVM 8-4 8 0.40 1.14 73 44 M20
XZM-10-4 10 0.5 1.14 74 46 M20
XVM 16-4 16 0.75 2.08 74 65 M20
XVM 20-4 20 1.1 2.6 74 67 M20
XVM 25-4 25 1.5 3.0 74 111 M20
XVM 32-4 32 2.00 4.73 77 116 M20
XVM-40-4 40 2.2 5.0 73 135 M20
XVM 50-4 5 2.50 6.25 73 240 M24
XVM 75-4 75 4.00 10.14 74 270 M30
XVM100-4 100 6.50 16.88 71 390 M30
XVM120-4 120 8.00 19.40 76 510 M36
XVM140-4 140 10.00 24.16 75 580 M36
XVM160-4 160 10.00 24.16 75 620 M36
XVM2.5-6 1000 2.5 0.20 0.70 71 28 M16
XVM 5-6 5 0.40 1.23 74 37 M16
XVM 8-6 8 0.55 1.5 74 51 M20
XVM 10-6 10 0.75 2.18 78 69 M20
XVM 16-6 16 1.10 3.03 78 83 M20
XVM 20-6 20 1.50 4.10 81 117 M20
XVM 30-6 30 2.20 6.10 80 165 M20
XVM 40-6 40 3.00 7.40 84 189 M20
XVM 50-6 50 3.70 9.60 83 230 M24
XVM 75-6 7.5 5.50 12.60 81 290 M30
XVM100-6 100 7.50 17.93 81 450 M30
XVM120-6 120 9.50 21.70 83 550 M36
XVM140-6 140 9.50 21.70 83 615 M36
XVM160-6 160 12.00 27.37 81 675 M36
XVM180-6 180 14.00 31.87 81 860 M42
XVM 5-8 750 5 0.40 1.62 68 74 M20
XVM 10-8 10 0.75 2.90 72 117 M20
XVM 16-8 16 1.50 4.02 80 172 M20
XVM 20-8 20 2.20 5.93 80 190 M20
XVM 30-8 30 3.00 8.10 82 230 M24
XVM 50-8 50 4.00 10.60 82 290 M30
XVM 75-8 75 6.50 17.10 81 450 M30
XVM100-8 100 8.50 21.80 81 690 M36

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: 6
Samples:
US$ 388/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

How do electric motors contribute to the efficiency of tasks like transportation?

Electric motors play a significant role in enhancing the efficiency of various transportation tasks. Their unique characteristics and advantages contribute to improved performance, reduced energy consumption, and environmental benefits. Here’s a detailed explanation of how electric motors contribute to the efficiency of tasks like transportation:

  1. High Energy Conversion Efficiency: Electric motors are known for their high energy conversion efficiency. They can convert a large percentage of electrical energy supplied to them into mechanical energy, resulting in minimal energy losses. Compared to internal combustion engines (ICEs), electric motors can achieve significantly higher efficiencies, which translates to improved energy utilization and reduced fuel consumption.
  2. Instant Torque and Responsive Performance: Electric motors deliver instant torque, providing quick acceleration and responsive performance. This characteristic is particularly advantageous in transportation tasks, such as electric vehicles (EVs) and electric trains, where rapid acceleration and deceleration are required. The immediate response of electric motors enhances overall vehicle efficiency and driver experience.
  3. Regenerative Braking: Electric motors enable regenerative braking, a process where the motor acts as a generator to convert kinetic energy into electrical energy during deceleration or braking. This recovered energy is then stored in batteries or fed back into the power grid, reducing energy waste and extending the vehicle’s range. Regenerative braking improves overall efficiency and helps maximize the energy efficiency of electric vehicles.
  4. Efficient Power Distribution: Electric motors in transportation systems can be powered by electricity generated from various sources, including renewable energy. This allows for a diversified and cleaner energy mix, contributing to reduced greenhouse gas emissions and environmental impact. By utilizing electric motors, transportation tasks can leverage the increasing availability of renewable energy resources, leading to a more sustainable and efficient transport ecosystem.
  5. Reduced Maintenance Requirements: Electric motors have fewer moving parts compared to ICEs, resulting in reduced maintenance requirements. They eliminate the need for components like spark plugs, fuel injection systems, and complex exhaust systems. As a result, electric motors typically have longer service intervals, lower maintenance costs, and reduced downtime. This enhances operational efficiency and reduces the overall maintenance burden in transportation applications.
  6. Quiet and Vibration-Free Operation: Electric motors operate quietly and produce minimal vibrations compared to ICEs. This characteristic contributes to a more comfortable and pleasant passenger experience, especially in electric vehicles and electric trains. The reduced noise and vibration levels enhance the overall efficiency and comfort of transportation tasks while minimizing noise pollution in urban environments.
  7. Efficient Power Management and Control: Electric motors can be integrated with advanced power management and control systems. This allows for precise control over motor speed, torque, and power output, optimizing efficiency for specific transportation tasks. Intelligent control algorithms and energy management systems can further enhance the efficiency of electric motors by dynamically adjusting power delivery based on demand, driving conditions, and energy availability.
  8. Reduction of Emissions and Environmental Impact: Electric motors contribute to significant reductions in emissions and environmental impact compared to traditional combustion engines. By eliminating direct emissions at the point of use, electric motors help improve air quality and reduce greenhouse gas emissions. When powered by renewable energy sources, electric motors enable nearly zero-emission transportation, paving the way for a cleaner and more sustainable transportation sector.

Through their high energy conversion efficiency, instant torque, regenerative braking, efficient power distribution, reduced maintenance requirements, quiet operation, efficient power management, and environmental benefits, electric motors significantly enhance the efficiency of tasks like transportation. The widespread adoption of electric motors in transportation systems has the potential to revolutionize the industry, promoting energy efficiency, reducing reliance on fossil fuels, and mitigating environmental impact.

electric motor

Are there any emerging trends in electric motor technology, such as smart features?

Yes, there are several emerging trends in electric motor technology, including the integration of smart features. These trends aim to improve motor performance, efficiency, and functionality, while also enabling connectivity and advanced control capabilities. Here’s a detailed explanation of some of the emerging trends in electric motor technology:

  1. Internet of Things (IoT) Integration: Electric motors are becoming increasingly connected as part of the broader IoT ecosystem. IoT integration allows motors to communicate, share data, and be remotely monitored and controlled. By embedding sensors, communication modules, and data analytics capabilities, motors can provide real-time performance data, predictive maintenance insights, and energy consumption information. This connectivity enables proactive maintenance, optimized performance, and enhanced energy efficiency.
  2. Condition Monitoring and Predictive Maintenance: Smart electric motors are equipped with sensors that monitor various parameters such as temperature, vibration, and current. This data is analyzed in real-time to detect anomalies and potential faults. By implementing predictive maintenance algorithms, motor failures can be anticipated, enabling maintenance activities to be scheduled proactively. This trend reduces unplanned downtime, improves reliability, and optimizes maintenance costs.
  3. Advanced Motor Control and Optimization: Emerging electric motor technologies focus on advanced motor control techniques and optimization algorithms. These advancements allow for precise control of motor performance, adapting to changing load conditions, and optimizing energy efficiency. Additionally, sophisticated control algorithms enable motor systems to operate in coordination with other equipment, such as variable speed drives, power electronics, and energy storage systems, resulting in improved overall system efficiency.
  4. Energy Harvesting and Regenerative Features: Electric motors can harness energy through regenerative braking and energy harvesting techniques. Regenerative braking allows motors to recover and convert kinetic energy into electrical energy, which can be fed back into the system or stored for later use. Energy harvesting technologies, such as piezoelectric or electromagnetic systems, can capture ambient energy and convert it into usable electrical energy. These features enhance energy efficiency and reduce overall power consumption.
  5. Integration with Artificial Intelligence (AI) and Machine Learning (ML): The integration of electric motors with AI and ML technologies enables advanced motor control, optimization, and decision-making capabilities. AI and ML algorithms analyze motor performance data, identify patterns, and make real-time adjustments to optimize efficiency and performance. The combination of AI/ML with electric motors opens up possibilities for autonomous motor control, adaptive energy management, and intelligent fault detection.
  6. Miniaturization and Lightweight Design: Emerging trends in electric motor technology focus on miniaturization and lightweight design without compromising performance. This trend is particularly relevant for portable devices, electric vehicles, and aerospace applications. Advancements in materials, manufacturing processes, and motor design allow for smaller, lighter, and more powerful motors, enabling greater mobility, improved efficiency, and increased power density.

The integration of smart features in electric motor technology is driving advancements in connectivity, data analytics, predictive maintenance, advanced control, energy harvesting, AI/ML integration, and miniaturization. These trends are revolutionizing the capabilities and functionality of electric motors, making them more intelligent, efficient, and adaptable to various applications. As technology continues to evolve, electric motors are expected to play a crucial role in the ongoing transition towards smart and sustainable industries.

electric motor

What industries and applications commonly use electric motors?

Electric motors are widely utilized in various industries and applications due to their versatility, efficiency, and controllability. Here’s a detailed overview of the industries and applications where electric motors are commonly employed:

  1. Industrial Manufacturing: Electric motors are extensively used in industrial manufacturing processes. They power machinery and equipment such as conveyor systems, pumps, compressors, fans, mixers, robots, and assembly line equipment. Electric motors provide efficient and precise control over motion, making them essential for mass production and automation.
  2. Transportation: Electric motors play a crucial role in the transportation sector. They are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) to drive the wheels, providing propulsion. Electric motors offer benefits such as high torque at low speeds, regenerative braking, and improved energy efficiency. They are also employed in trains, trams, ships, and aircraft for various propulsion and auxiliary systems.
  3. HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for air circulation, fans, blowers, and pumps. Electric motors help in maintaining comfortable indoor environments and ensure efficient cooling, heating, and ventilation in residential, commercial, and industrial buildings.
  4. Appliances and Household Devices: Electric motors are found in numerous household appliances and devices. They power refrigerators, washing machines, dryers, dishwashers, vacuum cleaners, blenders, food processors, air conditioners, ceiling fans, and many other appliances. Electric motors enable the necessary mechanical actions for these devices to function effectively.
  5. Renewable Energy: Electric motors are integral components of renewable energy systems. They are used in wind turbines to convert wind energy into electrical energy. Electric motors are also employed in solar tracking systems to orient solar panels towards the sun for optimal energy capture. Additionally, electric motors are utilized in hydroelectric power plants for controlling water flow and generating electricity.
  6. Medical Equipment: Electric motors are crucial in various medical devices and equipment. They power surgical tools, pumps for drug delivery and fluid management, diagnostic equipment, dental drills, patient lifts, wheelchair propulsion, and many other medical devices. Electric motors provide the necessary precision, control, and reliability required in healthcare settings.
  7. Robotics and Automation: Electric motors are extensively used in robotics and automation applications. They drive the joints and actuators of robots, enabling precise and controlled movement. Electric motors are also employed in automated systems for material handling, assembly, packaging, and quality control in industries such as automotive manufacturing, electronics, and logistics.
  8. Aerospace and Defense: Electric motors have significant applications in the aerospace and defense sectors. They are used in aircraft for propulsion, control surfaces, landing gear, and auxiliary systems. Electric motors are also employed in military equipment, drones, satellites, guided missiles, and underwater vehicles.

These are just a few examples of the industries and applications where electric motors are commonly used. Electric motors provide a reliable, efficient, and controllable means of converting electrical energy into mechanical energy, making them essential components in numerous technologies and systems across various sectors.

China Best Sales High Rpm 220V 0.75kw Concrete Electric Vibrator Motor Price   with high quality China Best Sales High Rpm 220V 0.75kw Concrete Electric Vibrator Motor Price   with high quality
editor by CX 2024-05-14

China Best Sales Electric Motor AC Concrete Vibrator Three-Phase Customized Voltage Standard Vibrator Motor Mv90/15 for Screening / Vibrating / Compaction / Feeding with Great quality

Product Description

Product Description

MV series Vibration Motor 3phase Vibrators for Concrete
Purchasing guide:
1.pls confirm the poles(2/4/6/8) or rpm(3000/1500/1000/750-50Hz,3600/1800/1200/900-60Hz)
2.pls tell us the force(kN)
3.definite power(input or output power)
4.local voltage frequency

Type

Voltage

Force

Input Power

Current

Mounting

SIZE

  V

kN

kw 50Hz

A max Y

A

B

  MV40/3 220/380          0.3                 0.05           0.13        62-74         110                 SIZE1

MV60/3

220/380

0.7

0.08

0.16

62-74

106

SIZE10

MV100/3

220/380

1

0.1

0.19

62-74

106

SIZE10

MV200/3

220/380

2

0.18

0.35

62-74

106

             SIZE20

MV300/3

220/380

3

0.27

0.52

90

125

             SIZE30

MV400/3

220/380

4

0.3

0.58

90

125

             SIZE30

MV500/3

220/380

5

0.5

0.96

105

140

             SIZE40

MV700/3

220/380

7

0.66

1.25

105

140

             SIZE40

MV800/3

220/380

8

0.75

1.45

120

170

             SIZE50

MV1200/3

220/380

10

0.95

1.85

120

170

             SIZE50

MV1300/3

220/380

13

1.3

2.44

120

170

             SIZE50

MV1600/3

220/380

16

1.57

2.94

140

190

             SIZE60

MV2000/3

220/380

20

2

3.75

140

190

             SIZE60

MV2300/3

220/380

23

2.4

4.44

140

190

             SIZE60

MV3200/3

220/380

32

2.9

5.3

155

255

             SIZE75

MV4000/3

220/380

40

2.9

5.3

155

255

             SIZE75

MV5000/3

220/380

50

4

7.22

155

255

             SIZE75

   MV6500/3 220/380           65                  5.5             9.4          200          320                SIZE85
   MV9000/3 220/380           90                  10            17.8          200          320                SIZE85
   MV12000/3 220/380          120                  12.5            19          125          380                SIZE90
   MV15000/3 220/380          150                  18.8            27.5          125          380                SIZE90

 

Detailed Photos

 

 

FAQ

Any need can contact our customer service at any time ,all members of our company will serve you wholeheartedly
Q1 .What is the minimum order quantity requirement for this product
Answer:you can test 1pc for sample order starting ,but more big qtys have great price
Q2.About the shipping method and time limit?
Answer:A variety of shipping methods and trade terms for you to choose

  1. FOB;logistics in china ,can arrive your port around you ,Eta time is 7-30days depends on the distance
  2. CIF,Maritime transport ,plus insurance policy .it will be delivered to any destination port in china the world Eta time within 7-30days depends on the distance after sailing
  3. DAP:Air express delivery to the door .CHINAMFG usually from 5-15days for door to door delivery
  4. DDP:supported by some countries and regions .double customs clearance ,tax included ,delivery to door .support china -europe railway ,sea transportation ,air transportation .etc.For the specific time limit,please feel free time contact our service staff
  5. Any trade method ,location and transportation channel according to your requirements

Q3: Supported payment methods
Answer: We can accept the below payment method:TT,L/C at sight ,western union ,moneygram ,alipay , pay, union pay ,paypal etc
Q4:What parameters can the product be customized ?
Answer: we can customize the parameters according to your requirements ,we will tell you if it beyond our technology /equipment limits .basically parameters as follows

  1. Pump:MAX head ,QMAX ,Power ,voltage ,hz ,rpm etc
  2. Motor:RPM,Power ,hz ,voltage ,motor shell material ,single or 3 phase ,VFD etc
  3. Cut off machine :Power,cutting ability etc
  4. Centrifugal fans/axial fans :air volume ,speed ,power ,total pressure/static pressure
  5. Vibrator motor/flexible shaft: power ,speed ,meter ,connection head etc

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Universal, Household Appliances
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Species: Mv Series Vibration Motors
Rotor Structure: Winding Type
Casing Protection: Closed Type
Samples:
US$ 39/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

Can electric motors be adapted for use in both residential and industrial settings?

Yes, electric motors can be adapted for use in both residential and industrial settings. Their versatility, efficiency, and wide range of power options make them suitable for various applications in both environments. Here’s a detailed explanation of how electric motors can be adapted for use in residential and industrial settings:

  1. Residential Applications: Electric motors find numerous applications in residential settings, where their compact size, quiet operation, and energy efficiency are highly valued. Some common residential uses of electric motors include:
    • Home Appliances: Electric motors power a wide range of home appliances such as refrigerators, washing machines, dishwashers, vacuum cleaners, fans, and air conditioners. These motors are designed to provide efficient and reliable operation while minimizing noise and energy consumption.
    • Garage Door Openers: Electric motors are commonly used in residential garage door openers, providing convenient and automated access to the garage.
    • HVAC Systems: Electric motors drive the fans and compressors in heating, ventilation, and air conditioning (HVAC) systems, contributing to efficient climate control and indoor comfort.
    • Pool Pumps: Electric motors power pool pumps, circulating water and maintaining water quality in residential swimming pools.
    • Power Tools: Electric motors are integral components of various power tools used in residential settings, including drills, saws, and trimmers.
  2. Industrial Applications: Electric motors are extensively used in industrial settings due to their reliability, controllability, and adaptability to various industrial processes. Some common industrial applications of electric motors include:
    • Manufacturing Machinery: Electric motors drive a wide range of manufacturing machinery, including conveyor systems, pumps, compressors, mixers, and agitators. These motors are capable of providing precise speed and torque control, enhancing productivity and process efficiency.
    • Industrial Fans and Blowers: Electric motors power fans and blowers for ventilation, cooling, and air circulation in industrial facilities, contributing to a comfortable and safe working environment.
    • Machine Tools: Electric motors drive machine tools such as lathes, milling machines, and grinders, enabling precision machining operations in industrial manufacturing processes.
    • Material Handling Equipment: Electric motors are widely used in material handling equipment such as forklifts, conveyor systems, and hoists, facilitating efficient movement and transportation of goods within industrial facilities.
    • Pumps and Compressors: Electric motors power pumps and compressors in industrial applications, such as water supply systems, HVAC systems, and pneumatic systems.
  3. Adaptability and Customization: Electric motors can be adapted and customized to meet specific requirements in both residential and industrial settings. They are available in a wide range of sizes, power ratings, and configurations to accommodate diverse applications. Motors can be designed for different voltages, frequencies, and environmental conditions, allowing for seamless integration into various systems and equipment. Additionally, advancements in motor control technologies, such as variable frequency drives (VFDs), enable precise speed and torque control, making electric motors highly versatile and adaptable to different operational needs.
  4. Energy Efficiency and Environmental Benefits: The use of electric motors in both residential and industrial settings offers significant energy efficiency advantages. Electric motors have higher efficiency compared to other types of motors, resulting in reduced energy consumption and operational costs. Furthermore, electric motors produce zero direct emissions at the point of use, contributing to a cleaner and more sustainable environment. In residential settings, energy-efficient electric motors in appliances and HVAC systems help homeowners reduce their energy bills and minimize their carbon footprint. In industrial applications, the adoption of electric motors supports energy conservation initiatives and aligns with sustainability goals.

In summary, electric motors are adaptable for use in both residential and industrial settings. Their compact size, energy efficiency, controllability, and versatility make them suitable for a wide range of applications, from home appliances and garage door openers to manufacturing machinery and material handling equipment. The use of electric motors brings benefits such as improved energy efficiency, reduced emissions, quieter operation, and enhanced control, contributing to the efficiency and sustainability of residential and industrial operations.

electric motor

What safety precautions should be followed when working with electric motors?

Working with electric motors requires adherence to specific safety precautions to ensure the well-being of individuals and prevent accidents. Electric motors involve electrical hazards that can cause electric shock, burns, or other injuries if proper safety measures are not followed. Here’s a detailed explanation of the safety precautions that should be followed when working with electric motors:

  1. Qualified Personnel: It is important to assign work on electric motors to qualified personnel who have the necessary knowledge, training, and experience in electrical systems and motor operation. Qualified electricians or technicians should handle installation, maintenance, and repairs involving electric motors.
  2. De-Energization and Lockout/Tagout: Before performing any work on electric motors, they should be de-energized, and appropriate lockout/tagout procedures should be followed. This involves isolating the motor from the power source, ensuring that it cannot be energized accidentally. Lockout/tagout procedures help prevent unexpected startup and protect workers from electrical hazards.
  3. Personal Protective Equipment (PPE): When working with electric motors, appropriate personal protective equipment should be worn. This may include insulated gloves, safety glasses, protective clothing, and footwear with electrical insulation. PPE helps protect against potential electrical shocks, burns, and other physical hazards.
  4. Inspection and Maintenance: Regular inspection and maintenance of electric motors are essential to identify potential issues or defects that could compromise safety. This includes checking for loose connections, damaged insulation, worn-out components, or overheating. Any defects or abnormalities should be addressed promptly by qualified personnel.
  5. Proper Grounding: Electric motors should be properly grounded to prevent electrical shock hazards. Grounding ensures that any fault currents are redirected safely to the ground, reducing the risk of electric shock to individuals working on or around the motor.
  6. Avoiding Wet Conditions: Electric motors should not be operated or worked on in wet or damp conditions unless they are specifically designed for such environments. Water or moisture increases the risk of electrical shock. If working in wet conditions is necessary, appropriate safety measures and equipment, such as waterproof PPE, should be used.
  7. Safe Electrical Connections: When connecting or disconnecting electric motors, proper electrical connections should be made. This includes ensuring that power is completely switched off, using appropriate tools and techniques for making connections, and tightening electrical terminals securely. Loose or faulty connections can lead to electrical hazards, overheating, or equipment failure.
  8. Awareness of Capacitors: Some electric motors contain capacitors that store electrical energy even when the motor is de-energized. These capacitors can discharge unexpectedly and cause electric shock. Therefore, it is important to discharge capacitors safely before working on the motor and to be cautious of potential residual energy even after de-energization.
  9. Training and Knowledge: Individuals working with electric motors should receive proper training and have a good understanding of electrical safety practices and procedures. They should be knowledgeable about the potential hazards associated with electric motors and know how to respond to emergencies, such as electrical shocks or fires.
  10. Adherence to Regulations and Standards: Safety precautions should align with relevant regulations, codes, and standards specific to electrical work and motor operation. These may include local electrical codes, occupational safety guidelines, and industry-specific standards. Compliance with these regulations helps ensure a safe working environment.

It is crucial to prioritize safety when working with electric motors. Following these safety precautions, along with any additional guidelines provided by equipment manufacturers or local regulations, helps minimize the risk of electrical accidents, injuries, and property damage. Regular training, awareness, and a safety-focused mindset contribute to a safer working environment when dealing with electric motors.

electric motor

How do electric motors generate motion and mechanical work?

Electric motors generate motion and mechanical work through the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors accomplish this:

  1. Magnetic Fields: Electric motors consist of a stationary part called the stator and a rotating part called the rotor. The stator contains coils of wire that are supplied with an electric current, creating a magnetic field around them. The rotor, on the other hand, typically has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor creates a rotational force, also known as torque. This torque causes the rotor to start rotating.
  3. Electromagnetic Induction: In certain types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current (AC) is supplied to the stator, it creates a changing magnetic field. This changing magnetic field induces voltage in the rotor, which leads to the flow of current in the rotor. The current in the rotor produces its own magnetic field, and the interaction between the stator’s magnetic field and the rotor’s magnetic field results in rotation.
  4. Commutation: In motors that use direct current (DC), such as brushed DC motors, commutation is employed. Commutation is the process of reversing the direction of current in the rotor’s electromagnets as the rotor rotates. This is done using a component called a commutator, which ensures that the magnetic fields of the rotor and the stator are always properly aligned. By periodically reversing the current, the commutator allows for continuous rotation.
  5. Conversion of Electrical Energy to Mechanical Energy: As the rotor rotates, the mechanical energy is produced. The rotational motion of the rotor is transferred to the motor’s output shaft, which is connected to the load or the device that needs to be driven. The mechanical work is performed as the output shaft drives the load, such as spinning a fan blade, rotating a conveyor belt, or powering a machine.

In summary, electric motors generate motion and mechanical work by utilizing the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. The electric current flowing through the stator’s coils creates a magnetic field that interacts with the magnetic field of the rotor, producing torque and initiating rotation. In some motors, electromagnetic induction is employed, where a changing magnetic field induces voltage and current in the rotor, leading to rotation. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft, enabling the motor to perform mechanical work by driving the load.

China Best Sales Electric Motor AC Concrete Vibrator Three-Phase Customized Voltage Standard Vibrator Motor Mv90/15 for Screening / Vibrating / Compaction / Feeding   with Great quality China Best Sales Electric Motor AC Concrete Vibrator Three-Phase Customized Voltage Standard Vibrator Motor Mv90/15 for Screening / Vibrating / Compaction / Feeding   with Great quality
editor by CX 2024-04-30

China OEM Wacker Type Portable Zn-70 Zn-90 220V 50/60Hz Electric Concrete Vibrator Motor wholesaler

Product Description

Data of Merchandise

Concrete vibrator is employed to consolidate cement and remove all the trapped air bubbles to give you the toughest cement achievable, widely employed in a variety of developing reasons and concrete basis function this kind of as highway,bridge and tunnel.it is an indispensable tool in concrete spot in distant region CZPT electric power or when there is black out.

 It can be tailored to each variety of application, vibrator heads and shafts can be effortlessly combined and quickly exchanged to match the appropriate products to the work.

Concrete vibrators by vibrating the position of the concrete by vibration during air overflow inner member, I plant the vibrator, compacting member can increase energy. I plant vibrator lengthy existence, higher performance, huge amplitude, is an critical concrete building equipment.

 

 

Ordering information of surface variety concrete vibrator

 

About Item:

Please notify us the adhering to information for the purpose of servicing you much better!

one. Solution Product.

two. Motor Power.

three. Voltage.

4. Vibration Frequency.

About Shipping: fifteen days following getting your deposit and following the purchase confirmed.

About Payment: L/C, T/T or other individuals you like.
 

Our Services:                                                                                  

 

1.All items will be well packed just before transport.

two.All goods have 12 months guarantee and we confident the items will totally free from upkeep inside of warranty period.

three.Reply your inquiry in 24 doing work hours.

four.Personalized style is accessible.

5.Unique and CZPT resolution can be offered to our client by our properly-qualified and specialist engineers.

6.As an CZPT vendor,we always use high good quality substance,advanced machines,skilled technicians to ensure good quality.

seven.Have our owm engineer crew,every single device is style as customer’s specfic need,the functionality is higher 20%~40% than other manufacturing facility with same expense.
 

 

 

Synchronous motors operate at a speed that is synchronous with the frequency of the mains recent. This implies that in the steady-point out of the motor, the rotation of the shaft is synchronized with the frequency of the offer existing. The period of rotation of the shaft is equivalent to the variety of AC cycles. The stator of a synchronous motor has polyphase AC electromagnets. These electromagnets produce a magnetic discipline that rotates in synchrony with the present in the wire. The rotor geared up with everlasting magnets or electromagnets rotates synchronously with the stator magnetic subject to sort the second synchronous rotating magnetic subject of the AC motor.
AC motors are also diverse from DC motors due to the fact most AC motors do not contain brushes. This signifies that routine maintenance and components alternative demands for AC motors have a tendency to be substantially lowered, with most end users normally anticipating a for a longer time average lifespan. Not like DC motors, the output speed of many sorts of AC motors is often identified by inverter manage – once more, we will briefly define a assortment of potential variants on the basic AC motor product.

China OEM Wacker Type Portable Zn-70 Zn-90 220V 50/60Hz Electric Concrete Vibrator Motor     wholesaler